000203081 001__ 203081
000203081 005__ 20210129220259.0
000203081 0247_ $$2doi$$a10.1088/0953-8984/27/31/316002
000203081 0247_ $$2ISSN$$a0953-8984
000203081 0247_ $$2ISSN$$a1361-648X
000203081 0247_ $$2WOS$$aWOS:000358595500014
000203081 037__ $$aFZJ-2015-05116
000203081 041__ $$aEnglish
000203081 082__ $$a530
000203081 1001_ $$0P:(DE-HGF)0$$aKashid, Vikas$$b0$$eCorresponding author
000203081 245__ $$aMagnetic properties of 2D nickel nanostrips: structure dependent magnetism and Stoner criterion
000203081 260__ $$aBristol$$bIOP Publ.$$c2015
000203081 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438676919_16989
000203081 3367_ $$2DataCite$$aOutput Types/Journal article
000203081 3367_ $$00$$2EndNote$$aJournal Article
000203081 3367_ $$2BibTeX$$aARTICLE
000203081 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203081 3367_ $$2DRIVER$$aarticle
000203081 520__ $$aWe have investigated different geometries of two-dimensional (2D) infinite length Ni nanowires of increasing width using spin density functional theory calculations. Our simulations demonstrate that the parallelogram motif is the most stable and structures that incorporate the parallelogram motif are more stable as compared to rectangular structures. The wires are conducting and the conductance channels increase with increasing width. The wires have a non-linear behavior in the ballistic anisotropic magnetoresistance ratios (BAMR) with respect to the magnetization directions. All 2D nanowires as well as Ni (1 1 1) and Ni (1 0 0) monolayer investigated are ferromagnetic under the Stoner criterion and exhibit enhanced magnetic moments as compared to bulk Ni and the respective Ni monolayers. The easy axis for all nickel nanowires under investigation is observed to be along the wire axis. The double rectangular nanowire exhibits a magnetic anomaly with a smaller magnetic moment when compared to Ni (1 0 0) monolayer and is the only structure with an easy axis perpendicular to the wire axis. The Stoner parameter which has been known to be structure independent in bulk and surfaces is found to vary with the structure and the width of the nanowires. The less stable rectangular and rhombus shaped nanowires have a higher ferromagnetic strength than parallelogram shaped nanowires.
000203081 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000203081 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000203081 588__ $$aDataset connected to CrossRef
000203081 7001_ $$0P:(DE-HGF)0$$aShah, Vaishali$$b1
000203081 7001_ $$0P:(DE-HGF)0$$aSalunke, H. G.$$b2
000203081 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b3$$ufzj
000203081 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b4$$ufzj
000203081 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/27/31/316002$$gVol. 27, no. 31, p. 316002 -$$n31$$p316002$$tJournal of physics / Condensed matter$$v27$$x1361-648X$$y2015
000203081 8564_ $$uhttps://juser.fz-juelich.de/record/203081/files/0953-8984_27_31_316002.pdf$$yRestricted
000203081 909CO $$ooai:juser.fz-juelich.de:203081$$pVDB
000203081 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203081 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000203081 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2013
000203081 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203081 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203081 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203081 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203081 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203081 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203081 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203081 9141_ $$y2015
000203081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203081 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000203081 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000203081 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000203081 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000203081 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000203081 980__ $$ajournal
000203081 980__ $$aVDB
000203081 980__ $$aI:(DE-Juel1)IAS-1-20090406
000203081 980__ $$aI:(DE-Juel1)PGI-1-20110106
000203081 980__ $$aI:(DE-82)080009_20140620
000203081 980__ $$aUNRESTRICTED
000203081 981__ $$aI:(DE-Juel1)PGI-1-20110106