001     203081
005     20210129220259.0
024 7 _ |2 doi
|a 10.1088/0953-8984/27/31/316002
024 7 _ |2 ISSN
|a 0953-8984
024 7 _ |2 ISSN
|a 1361-648X
024 7 _ |2 WOS
|a WOS:000358595500014
037 _ _ |a FZJ-2015-05116
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Kashid, Vikas
|b 0
|e Corresponding author
245 _ _ |a Magnetic properties of 2D nickel nanostrips: structure dependent magnetism and Stoner criterion
260 _ _ |a Bristol
|b IOP Publ.
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1438676919_16989
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We have investigated different geometries of two-dimensional (2D) infinite length Ni nanowires of increasing width using spin density functional theory calculations. Our simulations demonstrate that the parallelogram motif is the most stable and structures that incorporate the parallelogram motif are more stable as compared to rectangular structures. The wires are conducting and the conductance channels increase with increasing width. The wires have a non-linear behavior in the ballistic anisotropic magnetoresistance ratios (BAMR) with respect to the magnetization directions. All 2D nanowires as well as Ni (1 1 1) and Ni (1 0 0) monolayer investigated are ferromagnetic under the Stoner criterion and exhibit enhanced magnetic moments as compared to bulk Ni and the respective Ni monolayers. The easy axis for all nickel nanowires under investigation is observed to be along the wire axis. The double rectangular nanowire exhibits a magnetic anomaly with a smaller magnetic moment when compared to Ni (1 0 0) monolayer and is the only structure with an easy axis perpendicular to the wire axis. The Stoner parameter which has been known to be structure independent in bulk and surfaces is found to vary with the structure and the width of the nanowires. The less stable rectangular and rhombus shaped nanowires have a higher ferromagnetic strength than parallelogram shaped nanowires.
536 _ _ |0 G:(DE-HGF)POF3-142
|a 142 - Controlling Spin-Based Phenomena (POF3-142)
|c POF3-142
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Shah, Vaishali
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Salunke, H. G.
|b 2
700 1 _ |0 P:(DE-Juel1)130848
|a Mokrousov, Yuriy
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, Stefan
|b 4
|u fzj
773 _ _ |0 PERI:(DE-600)1472968-4
|a 10.1088/0953-8984/27/31/316002
|g Vol. 27, no. 31, p. 316002 -
|n 31
|p 316002
|t Journal of physics / Condensed matter
|v 27
|x 1361-648X
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/203081/files/0953-8984_27_31_316002.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203081
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130848
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130548
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-142
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J PHYS-CONDENS MAT : 2013
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21