000203085 001__ 203085
000203085 005__ 20210129220259.0
000203085 0247_ $$2doi$$a10.1002/hbm.22936
000203085 0247_ $$2ISSN$$a1065-9471
000203085 0247_ $$2ISSN$$a1097-0193
000203085 0247_ $$2WOS$$aWOS:000364219500023
000203085 0247_ $$2altmetric$$aaltmetric:4415603
000203085 0247_ $$2pmid$$apmid:26381168
000203085 037__ $$aFZJ-2015-05120
000203085 041__ $$aEnglish
000203085 082__ $$a610
000203085 1001_ $$0P:(DE-Juel1)165784$$aRehme, Anne$$b0$$eCorresponding author
000203085 245__ $$aIndividual prediction of chronic motor outcome in the acute post-stroke stage: Behavioral parameters versus functional imaging
000203085 260__ $$aNew York, NY$$bWiley-Liss$$c2015
000203085 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449221956_29476
000203085 3367_ $$2DataCite$$aOutput Types/Journal article
000203085 3367_ $$00$$2EndNote$$aJournal Article
000203085 3367_ $$2BibTeX$$aARTICLE
000203085 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203085 3367_ $$2DRIVER$$aarticle
000203085 520__ $$aSeveral neurobiological factors have been found to correlate with functional recovery after brain lesions. However, predicting the individual potential of recovery remains difficult. Here we used multivariate support vector machine (SVM) classification to explore the prognostic value of functional magnetic resonance imaging (fMRI) to predict individual motor outcome at 4–6 months post-stroke. To this end, 21 first-ever stroke patients with hand motor deficits participated in an fMRI hand motor task in the first few days post-stroke. Motor impairment was quantified assessing grip force and the Action Research Arm Test. Linear SVM classifiers were trained to predict good versus poor motor outcome of unseen new patients. We found that fMRI activity acquired in the first week post-stroke correctly predicted the outcome for 86% of all patients. In contrast, the concurrent assessment of motor function provided 76% accuracy with low sensitivity (<60%). Furthermore, the outcome of patients with initially moderate impairment and high outcome variability could not be predicted based on motor tests. In contrast, fMRI provided 87.5% prediction accuracy in these patients. Classifications were driven by activity in ipsilesional motor areas and contralesional cerebellum. The accuracy of subacute fMRI data (two weeks post-stroke), age, time post-stroke, lesion volume, and location were at 50%-chance-level. In conclusion, multivariate decoding of fMRI data with SVM early after stroke enables a robust prediction of motor recovery. The potential for recovery is influenced by the initial dysfunction of the active motor system, particularly in those patients whose outcome cannot be predicted by behavioral tests.
000203085 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000203085 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x1
000203085 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x2
000203085 588__ $$aDataset connected to CrossRef
000203085 7001_ $$0P:(DE-HGF)0$$aVolz, L.$$b1
000203085 7001_ $$0P:(DE-HGF)0$$aFeis, D. L.$$b2
000203085 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b3
000203085 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b4
000203085 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b5
000203085 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.22936$$n11$$p4553-4565$$tHuman brain mapping$$v36$$x1065-9471$$y2015
000203085 8564_ $$uhttps://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.pdf$$yRestricted
000203085 8564_ $$uhttps://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.gif?subformat=icon$$xicon$$yRestricted
000203085 8564_ $$uhttps://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203085 8564_ $$uhttps://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203085 8564_ $$uhttps://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203085 8564_ $$uhttps://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203085 909CO $$ooai:juser.fz-juelich.de:203085$$pec_fundedresources$$pVDB$$popenaire
000203085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165784$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000203085 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000203085 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x1
000203085 9141_ $$y2015
000203085 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203085 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203085 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000203085 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2013
000203085 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203085 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203085 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203085 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203085 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000203085 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000203085 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bHUM BRAIN MAPP : 2013
000203085 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000203085 920__ $$lyes
000203085 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000203085 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
000203085 980__ $$ajournal
000203085 980__ $$aVDB
000203085 980__ $$aI:(DE-Juel1)INM-3-20090406
000203085 980__ $$aI:(DE-Juel1)INM-1-20090406
000203085 980__ $$aUNRESTRICTED
000203085 981__ $$aI:(DE-Juel1)INM-1-20090406