001     203085
005     20210129220259.0
024 7 _ |a 10.1002/hbm.22936
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a WOS:000364219500023
|2 WOS
024 7 _ |a altmetric:4415603
|2 altmetric
024 7 _ |a pmid:26381168
|2 pmid
037 _ _ |a FZJ-2015-05120
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rehme, Anne
|0 P:(DE-Juel1)165784
|b 0
|e Corresponding author
245 _ _ |a Individual prediction of chronic motor outcome in the acute post-stroke stage: Behavioral parameters versus functional imaging
260 _ _ |a New York, NY
|c 2015
|b Wiley-Liss
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449221956_29476
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Several neurobiological factors have been found to correlate with functional recovery after brain lesions. However, predicting the individual potential of recovery remains difficult. Here we used multivariate support vector machine (SVM) classification to explore the prognostic value of functional magnetic resonance imaging (fMRI) to predict individual motor outcome at 4–6 months post-stroke. To this end, 21 first-ever stroke patients with hand motor deficits participated in an fMRI hand motor task in the first few days post-stroke. Motor impairment was quantified assessing grip force and the Action Research Arm Test. Linear SVM classifiers were trained to predict good versus poor motor outcome of unseen new patients. We found that fMRI activity acquired in the first week post-stroke correctly predicted the outcome for 86% of all patients. In contrast, the concurrent assessment of motor function provided 76% accuracy with low sensitivity (<60%). Furthermore, the outcome of patients with initially moderate impairment and high outcome variability could not be predicted based on motor tests. In contrast, fMRI provided 87.5% prediction accuracy in these patients. Classifications were driven by activity in ipsilesional motor areas and contralesional cerebellum. The accuracy of subacute fMRI data (two weeks post-stroke), age, time post-stroke, lesion volume, and location were at 50%-chance-level. In conclusion, multivariate decoding of fMRI data with SVM early after stroke enables a robust prediction of motor recovery. The potential for recovery is influenced by the initial dysfunction of the active motor system, particularly in those patients whose outcome cannot be predicted by behavioral tests.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 1
536 _ _ |a HBP - The Human Brain Project (604102)
|0 G:(EU-Grant)604102
|c 604102
|f FP7-ICT-2013-FET-F
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Volz, L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Feis, D. L.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 3
700 1 _ |a Fink, Gereon Rudolf
|0 P:(DE-Juel1)131720
|b 4
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 5
773 _ _ |a 10.1002/hbm.22936
|0 PERI:(DE-600)1492703-2
|n 11
|p 4553-4565
|t Human brain mapping
|v 36
|y 2015
|x 1065-9471
856 4 _ |u https://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203085/files/Rehme_et_al-2015-Human_Brain_Mapping.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203085
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165784
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161406
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b HUM BRAIN MAPP : 2013
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-1-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21