Home > Publications database > Spatial resolution and radiation damage in quantitative high-resolution STEM-EEL spectroscopy in oxides > print |
001 | 20311 | ||
005 | 20180208223841.0 | ||
024 | 7 | _ | |2 DOI |a 10.1016/j.micron.2011.10.006 |
024 | 7 | _ | |2 WOS |a WOS:000301702400006 |
037 | _ | _ | |a PreJuSER-20311 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 570 |
084 | _ | _ | |2 WoS |a Microscopy |
100 | 1 | _ | |a Houben, L. |b 0 |u FZJ |0 P:(DE-Juel1)VDB4944 |
245 | _ | _ | |a Spatial resolution and radiation damage in quantitative high-resolution STEM-EEL spectroscopy in oxides |
260 | _ | _ | |a New York, NY [u.a.] |b Elsevier |c 2012 |
300 | _ | _ | |a 532 - 537 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |a Micron |x 0968-4328 |0 11601 |y 4 |v 43 |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
500 | _ | _ | |a Record converted from VDB: 12.11.2012 |
520 | _ | _ | |a The chemical analysis on the atomic scale in a scanning transmission electron microscope bears a number of challenges. These are an unambiguous assignment of a spectroscopic signal to a sample location and sufficient signal above noise for quantification. Modern aberration-corrected optics provide intense electron probes allowing for the highest spatial resolution and beam current density possible. On the other hand, non-destructive analysis requires low irradiation doses, so that there is a limit to the achievable signal-to-noise ratio. Here, we employ the StripeSTEM method that sacrifices the resolution in one spatial dimension in return for decreased radiation damage to the sample. Using this technique, radiation damage effects and achievable quantification accuracy are examined on the example of bulk SrTiO3 and a one unit cell thick layer of LaAlO3 in SrTiO3. The results show that valency artefacts are expected for conventional recording conditions where the electron dose is concentrated to a few atomic columns. Likewise a high accuracy for measuring the oxygen defect chemistry without radiation damage requires spreading out the irradiation dose. (C) 2011 Elsevier Ltd. All rights reserved. |
536 | _ | _ | |a Grundlagen für zukünftige Informationstechnologien |c P42 |2 G:(DE-HGF) |0 G:(DE-Juel1)FUEK412 |x 0 |
588 | _ | _ | |a Dataset connected to Web of Science |
650 | _ | 7 | |a J |2 WoSType |
653 | 2 | 0 | |2 Author |a Scanning transmission electron microscopy |
653 | 2 | 0 | |2 Author |a Electron energy loss spectroscopy |
653 | 2 | 0 | |2 Author |a Radiation damage |
653 | 2 | 0 | |2 Author |a Oxides |
700 | 1 | _ | |a Heidelmann, M. |b 1 |u FZJ |0 P:(DE-Juel1)157790 |
700 | 1 | _ | |a Gunkel, F. |b 2 |u FZJ |0 P:(DE-Juel1)130677 |
773 | _ | _ | |a 10.1016/j.micron.2011.10.006 |g Vol. 43, p. 532 - 537 |p 532 - 537 |q 43<532 - 537 |0 PERI:(DE-600)1492133-9 |t Micron |v 43 |y 2012 |x 0968-4328 |
856 | 7 | _ | |u http://dx.doi.org/10.1016/j.micron.2011.10.006 |
909 | C | O | |o oai:juser.fz-juelich.de:20311 |p VDB |
913 | 1 | _ | |b Schlüsseltechnologien |k P42 |l Grundlagen für zukünftige Informationstechnologien (FIT) |1 G:(DE-HGF)POF2-420 |0 G:(DE-Juel1)FUEK412 |2 G:(DE-HGF)POF2-400 |v Grundlagen für zukünftige Informationstechnologien |x 0 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
914 | 1 | _ | |y 2012 |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |g PGI |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology |g JARA |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |g PGI |x 2 |
970 | _ | _ | |a VDB:(DE-Juel1)135673 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
981 | _ | _ | |a I:(DE-Juel1)VDB881 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|