000203114 001__ 203114
000203114 005__ 20240610115733.0
000203114 0247_ $$2doi$$a10.1007/s10955-015-1241-x
000203114 0247_ $$2ISSN$$a0022-4715
000203114 0247_ $$2ISSN$$a1572-9613
000203114 0247_ $$2WOS$$aWOS:000358660400004
000203114 0247_ $$2altmetric$$aaltmetric:2823274
000203114 037__ $$aFZJ-2015-05138
000203114 041__ $$aEnglish
000203114 082__ $$a530
000203114 1001_ $$aPopkov, V.$$b0
000203114 245__ $$aUniversality Classes in Two-Component Driven Diffusive Systems
000203114 260__ $$aNew York, NY [u.a.]$$bSpringer Science + Business Media B.V.$$c2015
000203114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438770073_16992
000203114 3367_ $$2DataCite$$aOutput Types/Journal article
000203114 3367_ $$00$$2EndNote$$aJournal Article
000203114 3367_ $$2BibTeX$$aARTICLE
000203114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203114 3367_ $$2DRIVER$$aarticle
000203114 520__ $$aWe study time-dependent density fluctuations in the stationary state of driven diffusive systems with two conserved densities ρλ. Using Monte-Carlo simulations of two coupled single-lane asymmetric simple exclusion processes we present numerical evidence for universality classes with dynamical exponents z=(1+5√)/2 and z=3/2 (but different from the Kardar–Parisi–Zhang (KPZ) universality class), which have not been reported yet for driven diffusive systems. The numerical asymmetry of the dynamical structure functions converges slowly for some of the non-KPZ superdiffusive modes for which mode coupling theory predicts maximally asymmetric z-stable Lévy scaling functions. We show that all universality classes predicted by mode coupling theory for two conservation laws are generic: they occur in two-component systems with nonlinearities in the associated currents already of the minimal order ρ2λρμ. The macroscopic stationary current-density relation and the compressibility matrix determine completely all permissible universality classes through the mode coupling coefficients which we compute explicitly for general two-component systems.
000203114 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000203114 588__ $$aDataset connected to CrossRef
000203114 7001_ $$aSchmidt, J.$$b1
000203114 7001_ $$0P:(DE-Juel1)130966$$aSchütz, G. M.$$b2$$eCorresponding author$$ufzj
000203114 773__ $$0PERI:(DE-600)2017302-7$$a10.1007/s10955-015-1241-x$$gVol. 160, no. 4, p. 835 - 860$$n4$$p835 - 860$$tJournal of statistical physics$$v160$$x1572-9613$$y2015
000203114 8564_ $$uhttps://juser.fz-juelich.de/record/203114/files/art%253A10.1007%252Fs10955-015-1241-x.pdf$$yRestricted
000203114 8564_ $$uhttps://juser.fz-juelich.de/record/203114/files/art%253A10.1007%252Fs10955-015-1241-x.gif?subformat=icon$$xicon$$yRestricted
000203114 8564_ $$uhttps://juser.fz-juelich.de/record/203114/files/art%253A10.1007%252Fs10955-015-1241-x.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203114 8564_ $$uhttps://juser.fz-juelich.de/record/203114/files/art%253A10.1007%252Fs10955-015-1241-x.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203114 8564_ $$uhttps://juser.fz-juelich.de/record/203114/files/art%253A10.1007%252Fs10955-015-1241-x.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203114 8564_ $$uhttps://juser.fz-juelich.de/record/203114/files/art%253A10.1007%252Fs10955-015-1241-x.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203114 909CO $$ooai:juser.fz-juelich.de:203114$$pVDB
000203114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130966$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203114 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000203114 9141_ $$y2015
000203114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ STAT PHYS : 2013
000203114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203114 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203114 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203114 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203114 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203114 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203114 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000203114 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000203114 980__ $$ajournal
000203114 980__ $$aVDB
000203114 980__ $$aI:(DE-Juel1)IAS-2-20090406
000203114 980__ $$aI:(DE-Juel1)ICS-2-20110106
000203114 980__ $$aUNRESTRICTED
000203114 981__ $$aI:(DE-Juel1)IBI-5-20200312
000203114 981__ $$aI:(DE-Juel1)IAS-2-20090406
000203114 981__ $$aI:(DE-Juel1)ICS-2-20110106