000203126 001__ 203126
000203126 005__ 20210129220303.0
000203126 0247_ $$2doi$$a10.1088/0957-4484/21/31/315702
000203126 0247_ $$2ISSN$$a0957-4484
000203126 0247_ $$2ISSN$$a1361-6528
000203126 0247_ $$2WOS$$aWOS:000279961200019
000203126 037__ $$aFZJ-2015-05141
000203126 041__ $$aEnglish
000203126 082__ $$a530
000203126 1001_ $$0P:(DE-HGF)0$$aSchäfer-Nolte, E. O.$$b0
000203126 245__ $$aEnhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires
000203126 260__ $$aBristol$$bIOP Publ.$$c2010
000203126 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438859377_16992
000203126 3367_ $$2DataCite$$aOutput Types/Journal article
000203126 3367_ $$00$$2EndNote$$aJournal Article
000203126 3367_ $$2BibTeX$$aARTICLE
000203126 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203126 3367_ $$2DRIVER$$aarticle
000203126 520__ $$aIn the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon–plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.
000203126 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000203126 588__ $$aDataset connected to CrossRef
000203126 7001_ $$0P:(DE-HGF)0$$aStoica, T.$$b1$$eCorresponding author
000203126 7001_ $$0P:(DE-HGF)0$$aGotschke, T.$$b2
000203126 7001_ $$0P:(DE-HGF)0$$aLimbach, F. A.$$b3
000203126 7001_ $$0P:(DE-HGF)0$$aSutter, E.$$b4
000203126 7001_ $$0P:(DE-HGF)0$$aSutter, P.$$b5
000203126 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b6
000203126 7001_ $$0P:(DE-HGF)0$$aCalarco, R.$$b7
000203126 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/21/31/315702$$gVol. 21, no. 31, p. 315702 -$$n31$$p315702 -$$tNanotechnology$$v21$$x1361-6528$$y2010
000203126 8564_ $$uhttp://iopscience.iop.org/0957-4484/21/31/315702
000203126 8564_ $$uhttps://juser.fz-juelich.de/record/203126/files/0957-4484_21_31_315702.pdf$$yRestricted
000203126 8564_ $$uhttps://juser.fz-juelich.de/record/203126/files/0957-4484_21_31_315702.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203126 909CO $$ooai:juser.fz-juelich.de:203126$$pVDB
000203126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128637$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000203126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000203126 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000203126 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203126 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203126 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000203126 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2013
000203126 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203126 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203126 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203126 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203126 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203126 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000203126 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203126 920__ $$lyes
000203126 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000203126 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000203126 980__ $$ajournal
000203126 980__ $$aVDB
000203126 980__ $$aI:(DE-Juel1)PGI-9-20110106
000203126 980__ $$aI:(DE-82)080009_20140620
000203126 980__ $$aUNRESTRICTED