000203127 001__ 203127
000203127 005__ 20210129220304.0
000203127 0247_ $$2doi$$a10.1063/1.3442508
000203127 0247_ $$2ISSN$$a0003-6951
000203127 0247_ $$2ISSN$$a1931-9401
000203127 0247_ $$2WOS$$aWOS:000278404800030
000203127 0247_ $$2Handle$$a2128/17315
000203127 037__ $$aFZJ-2015-05142
000203127 041__ $$aEnglish
000203127 082__ $$a530
000203127 1001_ $$0P:(DE-HGF)0$$aAgafonov, Oleksiy B.$$b0
000203127 245__ $$aQuantum confinement effects in Si/Ge heterostructures with spatially ordered arrays of self-assembled quantum dots
000203127 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2010
000203127 3367_ $$2DRIVER$$aarticle
000203127 3367_ $$2DataCite$$aOutput Types/Journal article
000203127 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438859545_16991
000203127 3367_ $$2BibTeX$$aARTICLE
000203127 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203127 3367_ $$00$$2EndNote$$aJournal Article
000203127 520__ $$aMagnetotunneling spectroscopy was employed to probe the confinement in vertical Si/Ge double-barrier resonant tunneling diodes with regularly distributed Gequantum dots. Their current-voltage characteristics reveal a steplike behavior in the vicinity of zero bias, indicating resonant tunneling of heavy-holes via three-dimensionally confined unoccupied hole states in Gequantum dots. Assuming parabolic confinement, we extract the strength of the confinement potential of quantum dots.
000203127 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000203127 588__ $$aDataset connected to CrossRef
000203127 7001_ $$0P:(DE-HGF)0$$aDais, Christian$$b1
000203127 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b2$$ufzj
000203127 7001_ $$0P:(DE-HGF)0$$aHaug, Rolf J.$$b3
000203127 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.3442508$$gVol. 96, no. 22, p. 222107 -$$n22$$p222107 -$$tApplied physics letters$$v96$$x0003-6951$$y2010
000203127 8564_ $$uhttps://juser.fz-juelich.de/record/203127/files/1.3442508.pdf$$yOpenAccess
000203127 8564_ $$uhttps://juser.fz-juelich.de/record/203127/files/1.3442508.gif?subformat=icon$$xicon$$yOpenAccess
000203127 8564_ $$uhttps://juser.fz-juelich.de/record/203127/files/1.3442508.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000203127 8564_ $$uhttps://juser.fz-juelich.de/record/203127/files/1.3442508.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000203127 8564_ $$uhttps://juser.fz-juelich.de/record/203127/files/1.3442508.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000203127 8564_ $$uhttps://juser.fz-juelich.de/record/203127/files/1.3442508.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000203127 909CO $$ooai:juser.fz-juelich.de:203127$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000203127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203127 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000203127 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203127 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2013
000203127 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203127 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203127 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203127 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203127 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000203127 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203127 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203127 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203127 920__ $$lyes
000203127 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000203127 980__ $$ajournal
000203127 980__ $$aVDB
000203127 980__ $$aUNRESTRICTED
000203127 980__ $$aI:(DE-Juel1)PGI-9-20110106
000203127 9801_ $$aFullTexts