000203137 001__ 203137
000203137 005__ 20210129220306.0
000203137 0247_ $$2doi$$a10.1063/1.3530634
000203137 0247_ $$2ISSN$$a0021-8979
000203137 0247_ $$2ISSN$$a0148-6349
000203137 0247_ $$2ISSN$$a1089-7550
000203137 0247_ $$2WOS$$aWOS:000286219300115
000203137 0247_ $$2Handle$$a2128/16785
000203137 037__ $$aFZJ-2015-05150
000203137 041__ $$aEnglish
000203137 082__ $$a530
000203137 1001_ $$0P:(DE-HGF)0$$aLimbach, F.$$b0$$eCorresponding author
000203137 245__ $$aStructural and optical properties of InGaN–GaN nanowire heterostructures grown by molecular beam epitaxy
000203137 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2011
000203137 3367_ $$2DRIVER$$aarticle
000203137 3367_ $$2DataCite$$aOutput Types/Journal article
000203137 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438858763_16995
000203137 3367_ $$2BibTeX$$aARTICLE
000203137 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203137 3367_ $$00$$2EndNote$$aJournal Article
000203137 500__ $$3POF3_Assignment on 2016-02-29
000203137 520__ $$aInGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.
000203137 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000203137 588__ $$aDataset connected to CrossRef
000203137 7001_ $$0P:(DE-HGF)0$$aGotschke, T.$$b1
000203137 7001_ $$0P:(DE-HGF)0$$aStoica, T.$$b2
000203137 7001_ $$0P:(DE-HGF)0$$aCalarco, R.$$b3
000203137 7001_ $$0P:(DE-HGF)0$$aSutter, E.$$b4
000203137 7001_ $$0P:(DE-HGF)0$$aCiston, J.$$b5
000203137 7001_ $$0P:(DE-HGF)0$$aCusco, R.$$b6
000203137 7001_ $$0P:(DE-HGF)0$$aArtus, L.$$b7
000203137 7001_ $$0P:(DE-HGF)0$$aKremling, S.$$b8
000203137 7001_ $$0P:(DE-HGF)0$$aHöfling, S.$$b9
000203137 7001_ $$0P:(DE-HGF)0$$aWorschech, L.$$b10
000203137 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b11$$ufzj
000203137 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.3530634$$gVol. 109, no. 1, p. 014309 -$$n1$$p014309 -$$tJournal of applied physics$$v109$$x0021-8979$$y2011
000203137 8564_ $$uhttp://scitation.aip.org/content/aip/journal/jap/109/1/10.1063/1.3530634
000203137 8564_ $$uhttps://juser.fz-juelich.de/record/203137/files/1.3530634.pdf$$yOpenAccess
000203137 8564_ $$uhttps://juser.fz-juelich.de/record/203137/files/1.3530634.gif?subformat=icon$$xicon$$yOpenAccess
000203137 8564_ $$uhttps://juser.fz-juelich.de/record/203137/files/1.3530634.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000203137 8564_ $$uhttps://juser.fz-juelich.de/record/203137/files/1.3530634.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000203137 8564_ $$uhttps://juser.fz-juelich.de/record/203137/files/1.3530634.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000203137 8564_ $$uhttps://juser.fz-juelich.de/record/203137/files/1.3530634.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000203137 909CO $$ooai:juser.fz-juelich.de:203137$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000203137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128637$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000203137 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000203137 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000203137 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203137 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2013
000203137 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203137 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203137 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203137 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203137 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000203137 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203137 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203137 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203137 920__ $$lyes
000203137 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000203137 980__ $$ajournal
000203137 980__ $$aVDB
000203137 980__ $$aUNRESTRICTED
000203137 980__ $$aI:(DE-Juel1)PGI-9-20110106
000203137 9801_ $$aFullTexts