000203145 001__ 203145
000203145 005__ 20210129220307.0
000203145 0247_ $$2doi$$a10.1007/s11664-012-2096-4
000203145 0247_ $$2ISSN$$a0361-5235
000203145 0247_ $$2ISSN$$a1543-186X
000203145 0247_ $$2WOS$$aWOS:000309677200004
000203145 037__ $$aFZJ-2015-05154
000203145 041__ $$aEnglish
000203145 082__ $$a670
000203145 1001_ $$0P:(DE-HGF)0$$aKordoš, P.$$b0$$eCorresponding author
000203145 245__ $$aThermally Oxidized InAlN of Different Compositions for InAlN/GaN Heterostructure Field-Effect Transistors
000203145 260__ $$aWarrendale, Pa$$bTMS$$c2012
000203145 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438938605_24915
000203145 3367_ $$2DataCite$$aOutput Types/Journal article
000203145 3367_ $$00$$2EndNote$$aJournal Article
000203145 3367_ $$2BibTeX$$aARTICLE
000203145 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203145 3367_ $$2DRIVER$$aarticle
000203145 500__ $$3POF3_Assignment on 2016-02-29
000203145 520__ $$aProperties of InAlN/GaN heterostructure field-effect transistors with thermally oxidized (750°C, 2 min) InAlN barrier layers of different compositions (InN = 13%, 17%, and 21%) were evaluated. The saturation drain current was inversely proportional to the InN content and was lower than that obtained with nonoxidized devices. From the capacitance measurement, the resulting sheet charge density decreased from 1.1 × 1013 cm−2 to 0.6 × 1013 cm−2 with increased InN content, and it was only approximately 50% of that of the nonoxidized counterparts. The oxide thickness of approximately 1 nm was extracted from the zero-bias capacitances. The pulsed measurements yielded a very high gate lag independent from the InAlN composition (the pulsed-to-static drain current ratio was ∼0.5 for a 200-ns pulse width). On the other hand, a significantly lower gate lag was observed on nonoxidized SiN x passivated InAlN/GaN devices. The results demonstrate that a high density of trap states was created in the thermally oxidized InAlN/GaN structures.
000203145 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000203145 588__ $$aDataset connected to CrossRef
000203145 7001_ $$0P:(DE-Juel1)128613$$aMikulics, M.$$b1$$ufzj
000203145 7001_ $$0P:(DE-HGF)0$$aStoklas, R.$$b2
000203145 7001_ $$0P:(DE-HGF)0$$aČičo, K.$$b3
000203145 7001_ $$0P:(DE-HGF)0$$aDadgar, A.$$b4
000203145 7001_ $$0P:(DE-Juel1)125588$$aGrűtzmacher, D.$$b5$$ufzj
000203145 7001_ $$0P:(DE-HGF)0$$aKrost, A.$$b6
000203145 773__ $$0PERI:(DE-600)2032868-0$$a10.1007/s11664-012-2096-4$$gVol. 41, no. 11, p. 3013 - 3016$$n11$$p3013 - 3016$$tJournal of electronic materials$$v41$$x1543-186X$$y2012
000203145 8564_ $$uhttps://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.pdf$$yRestricted
000203145 8564_ $$uhttps://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.gif?subformat=icon$$xicon$$yRestricted
000203145 8564_ $$uhttps://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203145 8564_ $$uhttps://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203145 8564_ $$uhttps://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203145 8564_ $$uhttps://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203145 909CO $$ooai:juser.fz-juelich.de:203145$$pVDB
000203145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000203145 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000203145 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000203145 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTRON MATER : 2013
000203145 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203145 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203145 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203145 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203145 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203145 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203145 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203145 920__ $$lyes
000203145 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000203145 980__ $$ajournal
000203145 980__ $$aVDB
000203145 980__ $$aI:(DE-Juel1)PGI-9-20110106
000203145 980__ $$aUNRESTRICTED