001     203145
005     20210129220307.0
024 7 _ |a 10.1007/s11664-012-2096-4
|2 doi
024 7 _ |a 0361-5235
|2 ISSN
024 7 _ |a 1543-186X
|2 ISSN
024 7 _ |a WOS:000309677200004
|2 WOS
037 _ _ |a FZJ-2015-05154
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Kordoš, P.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Thermally Oxidized InAlN of Different Compositions for InAlN/GaN Heterostructure Field-Effect Transistors
260 _ _ |a Warrendale, Pa
|c 2012
|b TMS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1438938605_24915
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Properties of InAlN/GaN heterostructure field-effect transistors with thermally oxidized (750°C, 2 min) InAlN barrier layers of different compositions (InN = 13%, 17%, and 21%) were evaluated. The saturation drain current was inversely proportional to the InN content and was lower than that obtained with nonoxidized devices. From the capacitance measurement, the resulting sheet charge density decreased from 1.1 × 1013 cm−2 to 0.6 × 1013 cm−2 with increased InN content, and it was only approximately 50% of that of the nonoxidized counterparts. The oxide thickness of approximately 1 nm was extracted from the zero-bias capacitances. The pulsed measurements yielded a very high gate lag independent from the InAlN composition (the pulsed-to-static drain current ratio was ∼0.5 for a 200-ns pulse width). On the other hand, a significantly lower gate lag was observed on nonoxidized SiN x passivated InAlN/GaN devices. The results demonstrate that a high density of trap states was created in the thermally oxidized InAlN/GaN structures.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mikulics, M.
|0 P:(DE-Juel1)128613
|b 1
|u fzj
700 1 _ |a Stoklas, R.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Čičo, K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dadgar, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Grűtzmacher, D.
|0 P:(DE-Juel1)125588
|b 5
|u fzj
700 1 _ |a Krost, A.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1007/s11664-012-2096-4
|g Vol. 41, no. 11, p. 3013 - 3016
|0 PERI:(DE-600)2032868-0
|n 11
|p 3013 - 3016
|t Journal of electronic materials
|v 41
|y 2012
|x 1543-186X
856 4 _ |u https://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203145/files/art_10.1007_s11664-012-2096-4.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203145
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128613
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)125588
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTRON MATER : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21