000203155 001__ 203155
000203155 005__ 20210129220308.0
000203155 0247_ $$2doi$$a10.1515/johh-2015-0020
000203155 0247_ $$2Handle$$a2128/9023
000203155 0247_ $$2WOS$$aWOS:000356811700002
000203155 037__ $$aFZJ-2015-05160
000203155 082__ $$a690
000203155 1001_ $$0P:(DE-HGF)0$$aFarrokhian Firouzi, Ahmad$$b0
000203155 245__ $$aBacteria transport and retention in intact calcareous soil columns under saturated flow conditions
000203155 260__ $$aWarsaw$$bVersita$$c2015
000203155 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439189264_17760
000203155 3367_ $$2DataCite$$aOutput Types/Journal article
000203155 3367_ $$00$$2EndNote$$aJournal Article
000203155 3367_ $$2BibTeX$$aARTICLE
000203155 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203155 3367_ $$2DRIVER$$aarticle
000203155 520__ $$aStudy of bacterial transport and retention in soil is important for various environmental applications such as groundwater contamination and bioremediation of soil and water. The main objective of this research was to quantitatively assess bacterial transport and deposition under saturated conditions in calcareous soil. A series of leaching experiments was conducted on two undisturbed soil columns. Breakthrough curves of Pseudomonas fluorescens and Cl were measured. After the leaching experiment, spatial distribution of bacteria retention in the soil columns was determined. The HYDRUS-1D one- and two-site kinetic models were used to predict the transport and deposition of bacteria in soil. The results indicated that the two-site model fits the observed data better than one-site kinetic model. Bacteria interaction with the soil of kinetic site 1 revealed relatively fast attachment and slow detachment, whereas attachment to and detachment of bacteria from kinetic site 2 was fast. Fast attachment and slow detachment of site 1 can be attributed to soil calcium carbonate that has favorable attachment sites for bacteria. The detachment rate was less than 0.02 of the attachment rate, indicating irreversible attachment of bacteria. High reduction rate of bacteria was also attributed to soil calcium carbonate.
000203155 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000203155 588__ $$aDataset connected to CrossRef
000203155 7001_ $$0P:(DE-HGF)0$$aHomaee, Mehdi$$b1$$eCorresponding author
000203155 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b2
000203155 7001_ $$0P:(DE-HGF)0$$aKasteel, Roy$$b3
000203155 7001_ $$0P:(DE-Juel1)129545$$aTappe, Wolfgang$$b4
000203155 773__ $$0PERI:(DE-600)2503779-1$$a10.1515/johh-2015-0020$$gVol. 63, no. 2$$n2$$p102-109$$tJournal of hydrology and hydromechanics$$v63$$x0042-790X$$y2015
000203155 8564_ $$uhttps://juser.fz-juelich.de/record/203155/files/johh-2015-0020.pdf$$yOpenAccess
000203155 8564_ $$uhttps://juser.fz-juelich.de/record/203155/files/johh-2015-0020.gif?subformat=icon$$xicon$$yOpenAccess
000203155 8564_ $$uhttps://juser.fz-juelich.de/record/203155/files/johh-2015-0020.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000203155 8564_ $$uhttps://juser.fz-juelich.de/record/203155/files/johh-2015-0020.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000203155 8564_ $$uhttps://juser.fz-juelich.de/record/203155/files/johh-2015-0020.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000203155 8564_ $$uhttps://juser.fz-juelich.de/record/203155/files/johh-2015-0020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000203155 909CO $$ooai:juser.fz-juelich.de:203155$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000203155 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROL HYDROMECH : 2013
000203155 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203155 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203155 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203155 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203155 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203155 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000203155 915__ $$0LIC:(DE-HGF)CCBYNCND3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
000203155 9141_ $$y2015
000203155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129545$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203155 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000203155 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000203155 980__ $$ajournal
000203155 980__ $$aVDB
000203155 980__ $$aUNRESTRICTED
000203155 980__ $$aI:(DE-Juel1)IBG-3-20101118
000203155 980__ $$aFullTexts
000203155 9801_ $$aFullTexts