000203158 001__ 203158
000203158 005__ 20210129220309.0
000203158 0247_ $$2doi$$a10.1021/acs.est.5b00134
000203158 0247_ $$2ISSN$$a0013-936X
000203158 0247_ $$2ISSN$$a1520-5851
000203158 0247_ $$2Handle$$a2128/9025
000203158 0247_ $$2WOS$$aWOS:000355058300033
000203158 037__ $$aFZJ-2015-05163
000203158 082__ $$a050
000203158 1001_ $$0P:(DE-HGF)0$$aSantner, Jakob$$b0$$eCorresponding author
000203158 245__ $$aNumerical Evaluation of Lateral Diffusion Inside Diffusive Gradients in Thin Films Samplers
000203158 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2015
000203158 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439189967_17761
000203158 3367_ $$2DataCite$$aOutput Types/Journal article
000203158 3367_ $$00$$2EndNote$$aJournal Article
000203158 3367_ $$2BibTeX$$aARTICLE
000203158 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203158 3367_ $$2DRIVER$$aarticle
000203158 520__ $$aUsing numerical simulation of diffusion inside diffusive gradients in thin films (DGT) samplers, we show that the effect of lateral diffusion inside the sampler on the solute flux into the sampler is a nonlinear function of the diffusion layer thickness and the physical sampling window size. In contrast, earlier work concluded that this effect was constant irrespective of parameters of the sampler geometry. The flux increase caused by lateral diffusion inside the sampler was determined to be ∼8.8% for standard samplers, which is considerably lower than the previous estimate of ∼20%. Lateral diffusion is also propagated to the diffusive boundary layer (DBL), where it leads to a slightly stronger decrease in the mass uptake than suggested by the common 1D diffusion model that is applied for evaluating DGT results. We introduce a simple correction procedure for lateral diffusion and demonstrate how the effect of lateral diffusion on diffusion in the DBL can be accounted for. These corrections often result in better estimates of the DBL thickness (δ) and the DGT-measured concentration than earlier approaches and will contribute to more accurate concentration measurements in solute monitoring in waters.
000203158 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000203158 588__ $$aDataset connected to CrossRef
000203158 7001_ $$0P:(DE-HGF)0$$aKreuzeder, Andreas$$b1
000203158 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b2
000203158 7001_ $$0P:(DE-HGF)0$$aWenzel, Walter W.$$b3
000203158 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/acs.est.5b00134$$gVol. 49, no. 10, p. 6109 - 6116$$n10$$p6109 - 6116$$tEnvironmental science & technology$$v49$$x1520-5851$$y2015
000203158 8564_ $$uhttps://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.pdf$$yOpenAccess
000203158 8564_ $$uhttps://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.gif?subformat=icon$$xicon$$yOpenAccess
000203158 8564_ $$uhttps://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000203158 8564_ $$uhttps://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000203158 8564_ $$uhttps://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000203158 8564_ $$uhttps://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000203158 909CO $$ooai:juser.fz-juelich.de:203158$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000203158 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203158 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203158 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000203158 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON SCI TECHNOL : 2013
000203158 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203158 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203158 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203158 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203158 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000203158 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000203158 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000203158 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000203158 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENVIRON SCI TECHNOL : 2013
000203158 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000203158 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000203158 9141_ $$y2015
000203158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203158 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000203158 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000203158 980__ $$ajournal
000203158 980__ $$aVDB
000203158 980__ $$aUNRESTRICTED
000203158 980__ $$aI:(DE-Juel1)IBG-3-20101118
000203158 980__ $$aFullTexts
000203158 9801_ $$aFullTexts