001     203158
005     20210129220309.0
024 7 _ |2 doi
|a 10.1021/acs.est.5b00134
024 7 _ |2 ISSN
|a 0013-936X
024 7 _ |2 ISSN
|a 1520-5851
024 7 _ |2 Handle
|a 2128/9025
024 7 _ |2 WOS
|a WOS:000355058300033
037 _ _ |a FZJ-2015-05163
082 _ _ |a 050
100 1 _ |0 P:(DE-HGF)0
|a Santner, Jakob
|b 0
|e Corresponding author
245 _ _ |a Numerical Evaluation of Lateral Diffusion Inside Diffusive Gradients in Thin Films Samplers
260 _ _ |a Columbus, Ohio
|b American Chemical Society
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1439189967_17761
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Using numerical simulation of diffusion inside diffusive gradients in thin films (DGT) samplers, we show that the effect of lateral diffusion inside the sampler on the solute flux into the sampler is a nonlinear function of the diffusion layer thickness and the physical sampling window size. In contrast, earlier work concluded that this effect was constant irrespective of parameters of the sampler geometry. The flux increase caused by lateral diffusion inside the sampler was determined to be ∼8.8% for standard samplers, which is considerably lower than the previous estimate of ∼20%. Lateral diffusion is also propagated to the diffusive boundary layer (DBL), where it leads to a slightly stronger decrease in the mass uptake than suggested by the common 1D diffusion model that is applied for evaluating DGT results. We introduce a simple correction procedure for lateral diffusion and demonstrate how the effect of lateral diffusion on diffusion in the DBL can be accounted for. These corrections often result in better estimates of the DBL thickness (δ) and the DGT-measured concentration than earlier approaches and will contribute to more accurate concentration measurements in solute monitoring in waters.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Kreuzeder, Andreas
|b 1
700 1 _ |0 P:(DE-Juel1)157922
|a Schnepf, Andrea
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Wenzel, Walter W.
|b 3
773 _ _ |0 PERI:(DE-600)1465132-4
|a 10.1021/acs.est.5b00134
|g Vol. 49, no. 10, p. 6109 - 6116
|n 10
|p 6109 - 6116
|t Environmental science & technology
|v 49
|x 1520-5851
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203158/files/acs.est.5b00134.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:203158
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157922
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ENVIRON SCI TECHNOL : 2013
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b ENVIRON SCI TECHNOL : 2013
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a FullTexts
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21