000203161 001__ 203161
000203161 005__ 20210129220310.0
000203161 0247_ $$2doi$$a10.1016/j.jhydrol.2015.03.030
000203161 0247_ $$2ISSN$$a0022-1694
000203161 0247_ $$2ISSN$$a1879-2707
000203161 0247_ $$2WOS$$aWOS:000354503300052
000203161 0247_ $$2altmetric$$aaltmetric:4097131
000203161 037__ $$aFZJ-2015-05166
000203161 082__ $$a690
000203161 1001_ $$0P:(DE-HGF)0$$aGueting, Nils$$b0$$eCorresponding author
000203161 245__ $$aImaging and characterization of facies heterogeneity in an alluvial aquifer using GPR full-waveform inversion and cone penetration tests
000203161 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000203161 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439190728_17763
000203161 3367_ $$2DataCite$$aOutput Types/Journal article
000203161 3367_ $$00$$2EndNote$$aJournal Article
000203161 3367_ $$2BibTeX$$aARTICLE
000203161 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203161 3367_ $$2DRIVER$$aarticle
000203161 520__ $$aSpatially highly resolved mapping of aquifer heterogeneities is critical for the accurate prediction of groundwater flow and contaminant transport. Here, we demonstrate the value of using full-waveform inversion of crosshole ground penetrating radar (GPR) data for aquifer characterization. We analyze field data from the Krauthausen test site, where crosshole GPR data were acquired along a transect of 20 m length and 10 m depth. Densely spaced cone penetration tests (CPT), located close to the GPR transect, were used to validate and interpret the tomographic images obtained from GPR. A strong correlation was observed between CPT porosity logs and porosity estimates derived from GPR using the Complex Refractive Index Model (CRIM). A less pronounced correlation was observed between electrical conductivity data derived from GPR and CPT. Cluster analysis of the GPR data defined three different subsurface facies, which were found to correspond to sediments with different grain size and porosity. In conclusion, our study suggests that full-waveform inversion of crosshole GPR data followed by cluster analysis is an applicable approach to identify hydrogeological facies in alluvial aquifers and to map their architecture and connectivity. Such facies maps provide valuable information about the subsurface heterogeneity and can be used to construct geologically realistic subsurface models for numerical flow and transport prediction.
000203161 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000203161 588__ $$aDataset connected to CrossRef
000203161 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b1$$ufzj
000203161 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b2$$ufzj
000203161 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b3$$ufzj
000203161 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4$$ufzj
000203161 7001_ $$0P:(DE-HGF)0$$aEnglert, Andreas$$b5
000203161 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2015.03.030$$gVol. 524, p. 680 - 695$$p680 - 695$$tJournal of hydrology$$v524$$x0022-1694$$y2015
000203161 8564_ $$uhttps://juser.fz-juelich.de/record/203161/files/1-s2.0-S0022169415002012-main.pdf$$yRestricted
000203161 8564_ $$uhttps://juser.fz-juelich.de/record/203161/files/1-s2.0-S0022169415002012-main.gif?subformat=icon$$xicon$$yRestricted
000203161 8564_ $$uhttps://juser.fz-juelich.de/record/203161/files/1-s2.0-S0022169415002012-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203161 8564_ $$uhttps://juser.fz-juelich.de/record/203161/files/1-s2.0-S0022169415002012-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203161 8564_ $$uhttps://juser.fz-juelich.de/record/203161/files/1-s2.0-S0022169415002012-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203161 8564_ $$uhttps://juser.fz-juelich.de/record/203161/files/1-s2.0-S0022169415002012-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203161 909CO $$ooai:juser.fz-juelich.de:203161$$pVDB:Earth_Environment$$pVDB
000203161 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROL : 2013
000203161 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203161 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203161 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203161 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203161 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203161 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203161 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000203161 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000203161 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000203161 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203161 9141_ $$y2015
000203161 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203161 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203161 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203161 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203161 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203161 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000203161 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000203161 980__ $$ajournal
000203161 980__ $$aVDB
000203161 980__ $$aI:(DE-Juel1)IBG-3-20101118
000203161 980__ $$aUNRESTRICTED