000203170 001__ 203170
000203170 005__ 20210129220312.0
000203170 0247_ $$2doi$$a10.1016/j.geoderma.2015.03.020
000203170 0247_ $$2ISSN$$a0016-7061
000203170 0247_ $$2ISSN$$a1872-6259
000203170 0247_ $$2WOS$$aWOS:000357355500005
000203170 0247_ $$2altmetric$$aaltmetric:3911943
000203170 037__ $$aFZJ-2015-05175
000203170 082__ $$a550
000203170 1001_ $$0P:(DE-HGF)0$$aStutter, Marc I.$$b0$$eCorresponding author
000203170 245__ $$aLand use and soil factors affecting accumulation of phosphorus species in temperate soils
000203170 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000203170 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439192067_17761
000203170 3367_ $$2DataCite$$aOutput Types/Journal article
000203170 3367_ $$00$$2EndNote$$aJournal Article
000203170 3367_ $$2BibTeX$$aARTICLE
000203170 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203170 3367_ $$2DRIVER$$aarticle
000203170 520__ $$aData on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-two temperate soils (with soil organic C concentrations 12–449 g C kg− 1 and total P 295–3435 mg P kg− 1) for biogeochemical properties of soil C, reactive surfaces and P by common indices and 31P-NMR spectroscopy on NaOH–EDTA extracts for P species. Arable soil P was dominated by inorganic orthophosphate (276–2520 mg P kg− 1), > monoester P (105–446 mg P kg− 1). The limited diesters, polyphosphates and microbial P in arable soils suggest that cropping and fertiliser inputs limit ecosystem microbial functions and P diversity. Intensive grassland had inorganic orthophosphate concentrations (233–842 mg P kg− 1) similar to monoesters (200–658 mg P kg− 1) > diesters (0–50 mg P kg− 1) and polyphosphates (1–78 mg P kg− 1). As grazing became more extensive P in semi-natural systems was dominated by organic P, including monoesters (37–621 mg P kg− 1) and other diverse forms; principally diester (0–102 mg P kg− 1) and polyphosphates (0–108 mg P kg− 1). These were related to SOC, water extractable organic carbon (WEOC) and microbial P, suggesting strong microbially-mediated processes. A number of abiotic and biotic related processes appeared to control accumulation of different soil P species and gave considerable variability in forms and concentrations within land use groups. The implications are that to increase agricultural P efficiencies mechanisms to utilise both soil Pi and Po are needed and that specific management strategies may be required for site-specific circumstances of soil C and reactive properties such as Fe and Al complexes.
000203170 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000203170 588__ $$aDataset connected to CrossRef
000203170 7001_ $$0P:(DE-HGF)0$$aShand, Charles A.$$b1
000203170 7001_ $$0P:(DE-HGF)0$$aGeorge, Timothy S.$$b2
000203170 7001_ $$0P:(DE-HGF)0$$aBlackwell, Martin S. A.$$b3
000203170 7001_ $$0P:(DE-HGF)0$$aDixon, Liz$$b4
000203170 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b5$$ufzj
000203170 7001_ $$0P:(DE-HGF)0$$aMacKay, Regina L.$$b6
000203170 7001_ $$0P:(DE-HGF)0$$aRichardson, Alan E.$$b7
000203170 7001_ $$0P:(DE-HGF)0$$aCondron, Leo M.$$b8
000203170 7001_ $$0P:(DE-HGF)0$$aHaygarth, Philip M.$$b9
000203170 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2015.03.020$$gVol. 257-258, p. 29 - 39$$p29 - 39$$tGeoderma$$v257-258$$x0016-7061$$y2015
000203170 8564_ $$uhttps://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.pdf$$yRestricted
000203170 8564_ $$uhttps://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.gif?subformat=icon$$xicon$$yRestricted
000203170 8564_ $$uhttps://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203170 8564_ $$uhttps://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203170 8564_ $$uhttps://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203170 8564_ $$uhttps://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203170 909CO $$ooai:juser.fz-juelich.de:203170$$pVDB:Earth_Environment$$pVDB
000203170 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203170 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000203170 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2013
000203170 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203170 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203170 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203170 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203170 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203170 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000203170 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000203170 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203170 9141_ $$y2015
000203170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000203170 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000203170 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000203170 980__ $$ajournal
000203170 980__ $$aVDB
000203170 980__ $$aI:(DE-Juel1)IBG-3-20101118
000203170 980__ $$aUNRESTRICTED