001     203170
005     20210129220312.0
024 7 _ |2 doi
|a 10.1016/j.geoderma.2015.03.020
024 7 _ |2 ISSN
|a 0016-7061
024 7 _ |2 ISSN
|a 1872-6259
024 7 _ |2 WOS
|a WOS:000357355500005
024 7 _ |a altmetric:3911943
|2 altmetric
037 _ _ |a FZJ-2015-05175
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Stutter, Marc I.
|b 0
|e Corresponding author
245 _ _ |a Land use and soil factors affecting accumulation of phosphorus species in temperate soils
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1439192067_17761
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-two temperate soils (with soil organic C concentrations 12–449 g C kg− 1 and total P 295–3435 mg P kg− 1) for biogeochemical properties of soil C, reactive surfaces and P by common indices and 31P-NMR spectroscopy on NaOH–EDTA extracts for P species. Arable soil P was dominated by inorganic orthophosphate (276–2520 mg P kg− 1), > monoester P (105–446 mg P kg− 1). The limited diesters, polyphosphates and microbial P in arable soils suggest that cropping and fertiliser inputs limit ecosystem microbial functions and P diversity. Intensive grassland had inorganic orthophosphate concentrations (233–842 mg P kg− 1) similar to monoesters (200–658 mg P kg− 1) > diesters (0–50 mg P kg− 1) and polyphosphates (1–78 mg P kg− 1). As grazing became more extensive P in semi-natural systems was dominated by organic P, including monoesters (37–621 mg P kg− 1) and other diverse forms; principally diester (0–102 mg P kg− 1) and polyphosphates (0–108 mg P kg− 1). These were related to SOC, water extractable organic carbon (WEOC) and microbial P, suggesting strong microbially-mediated processes. A number of abiotic and biotic related processes appeared to control accumulation of different soil P species and gave considerable variability in forms and concentrations within land use groups. The implications are that to increase agricultural P efficiencies mechanisms to utilise both soil Pi and Po are needed and that specific management strategies may be required for site-specific circumstances of soil C and reactive properties such as Fe and Al complexes.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Shand, Charles A.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a George, Timothy S.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Blackwell, Martin S. A.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Dixon, Liz
|b 4
700 1 _ |0 P:(DE-Juel1)145865
|a Bol, Roland
|b 5
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a MacKay, Regina L.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Richardson, Alan E.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Condron, Leo M.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Haygarth, Philip M.
|b 9
773 _ _ |0 PERI:(DE-600)2001729-7
|a 10.1016/j.geoderma.2015.03.020
|g Vol. 257-258, p. 29 - 39
|p 29 - 39
|t Geoderma
|v 257-258
|x 0016-7061
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203170/files/1-s2.0-S0016706115000919-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203170
|p VDB
|p VDB:Earth_Environment
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145865
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b GEODERMA : 2013
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21