000203173 001__ 203173
000203173 005__ 20210129220313.0
000203173 0247_ $$2doi$$a10.1016/j.quascirev.2015.02.006
000203173 0247_ $$2ISSN$$a0277-3791
000203173 0247_ $$2ISSN$$a1873-457X
000203173 0247_ $$2WOS$$aWOS:000353090000014
000203173 037__ $$aFZJ-2015-05178
000203173 082__ $$a550
000203173 1001_ $$0P:(DE-HGF)0$$aOehlerich, M.$$b0
000203173 245__ $$aLateglacial and Holocene climatic changes in south-eastern Patagonia inferred from carbonate isotope records of Laguna Potrok Aike (Argentina)
000203173 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000203173 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439192521_17762
000203173 3367_ $$2DataCite$$aOutput Types/Journal article
000203173 3367_ $$00$$2EndNote$$aJournal Article
000203173 3367_ $$2BibTeX$$aARTICLE
000203173 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203173 3367_ $$2DRIVER$$aarticle
000203173 520__ $$aFirst results of strontium, calcium, carbon and oxygen isotope analyses of bulk carbonates from a 106 m long sediment record of Laguna Potrok Aike, located in southern Patagonia are presented. Morphological and isotopic investigations of μm-sized carbonate crystals in the sediment reveal an endogenic origin for the entire Holocene. During this time period the calcium carbonate record of Laguna Potrok Aike turned out to be most likely ikaite-derived. As ikaite precipitation in nature has only been observed in a narrow temperature window between 0 and 7 °C, the respective carbonate oxygen isotope ratios serve as a proxy of hydrological variations rather than of palaeotemperatures. We suggest that oxygen isotope ratios are sensitive to changes of the lake water balance induced by intensity variations of the Southern Hemisphere Westerlies and discuss the role of this wind belt as a driver for climate change in southern South America. In combination with other proxy records the evolution of westerly wind intensities is reconstructed. Our data suggest that weak SHW prevailed during the Lateglacial and the early Holocene, interrupted by an interval with strengthened Westerlies between 13.4 and 11.3 ka cal BP. Wind strength increased at 9.2 ka cal BP and significantly intensified until 7.0 ka cal BP. Subsequently, the wind intensity diminished and stabilised to conditions similar to present day after a period of reduced evaporation during the “Little Ice Age”. Strontium isotopes (87Sr/86Sr ratio) were identified as a potential lake-level indicator and point to a lowering from overflow conditions during the Glacial (∼17 ka cal BP) to lowest lake levels around 8 ka cal BP. Thereafter the strontium isotope curve resembles the lake-level curve which is stepwise rising until the “Little Ice Age”. The variability of the Ca isotope composition of the sediment reflects changes in the Ca budget of the lake, indicating higher degrees of Ca utilisation during the period with lowest lake level.
000203173 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000203173 588__ $$aDataset connected to CrossRef
000203173 7001_ $$0P:(DE-HGF)0$$aMayr, C.$$b1$$eCorresponding author
000203173 7001_ $$0P:(DE-HGF)0$$aGussone, N.$$b2
000203173 7001_ $$0P:(DE-HGF)0$$aHahn, A.$$b3
000203173 7001_ $$0P:(DE-HGF)0$$aHölzl, S.$$b4
000203173 7001_ $$0P:(DE-Juel1)129567$$aLücke, A.$$b5$$ufzj
000203173 7001_ $$0P:(DE-HGF)0$$aOhlendorf, C.$$b6
000203173 7001_ $$0P:(DE-HGF)0$$aRummel, S.$$b7
000203173 7001_ $$0P:(DE-HGF)0$$aTeichert, B. M. A.$$b8
000203173 7001_ $$0P:(DE-HGF)0$$aZolitschka, B.$$b9
000203173 773__ $$0PERI:(DE-600)1495523-4$$a10.1016/j.quascirev.2015.02.006$$gVol. 114, p. 189 - 202$$p189 - 202$$tQuaternary science reviews$$v114$$x0277-3791$$y2015
000203173 8564_ $$uhttps://juser.fz-juelich.de/record/203173/files/1-s2.0-S0277379115000621-main.pdf$$yRestricted
000203173 8564_ $$uhttps://juser.fz-juelich.de/record/203173/files/1-s2.0-S0277379115000621-main.gif?subformat=icon$$xicon$$yRestricted
000203173 8564_ $$uhttps://juser.fz-juelich.de/record/203173/files/1-s2.0-S0277379115000621-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203173 8564_ $$uhttps://juser.fz-juelich.de/record/203173/files/1-s2.0-S0277379115000621-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203173 8564_ $$uhttps://juser.fz-juelich.de/record/203173/files/1-s2.0-S0277379115000621-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203173 8564_ $$uhttps://juser.fz-juelich.de/record/203173/files/1-s2.0-S0277379115000621-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203173 909CO $$ooai:juser.fz-juelich.de:203173$$pVDB:Earth_Environment$$pVDB
000203173 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203173 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000203173 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQUATERNARY SCI REV : 2013
000203173 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203173 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203173 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203173 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203173 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203173 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203173 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000203173 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203173 9141_ $$y2015
000203173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000203173 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000203173 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000203173 980__ $$ajournal
000203173 980__ $$aVDB
000203173 980__ $$aI:(DE-Juel1)IBG-3-20101118
000203173 980__ $$aUNRESTRICTED