001     203175
005     20210129220314.0
024 7 _ |2 doi
|a 10.5194/bg-12-1205-2015
024 7 _ |2 ISSN
|a 1726-4170
024 7 _ |2 ISSN
|a 1726-4189
024 7 _ |2 Handle
|a 2128/9026
024 7 _ |2 WOS
|a WOS:000358044200002
037 _ _ |a FZJ-2015-05180
082 _ _ |a 570
100 1 _ |0 P:(DE-Juel1)145951
|a Post, H.
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Uncertainty analysis of eddy covariance CO2 flux measurements for different EC tower distances using an extended two-tower approach
260 _ _ |a Katlenburg-Lindau [u.a.]
|b Copernicus
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1439192796_17758
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The use of eddy covariance (EC) CO2 flux measurements in data assimilation and other applications requires an estimate of the random uncertainty. In previous studies, the (classical) two-tower approach has yielded robust uncertainty estimates, but care must be taken to meet the often competing requirements of statistical independence (non-overlapping footprints) and ecosystem homogeneity when choosing an appropriate tower distance. The role of the tower distance was investigated with help of a roving station separated between 8 m and 34 km from a permanent EC grassland station. Random uncertainty was estimated for five separation distances with the classical two-tower approach and an extended approach which removed systematic differences of CO2 fluxes measured at two EC towers. This analysis was made for a data set where (i) only similar weather conditions at the two sites were included, and (ii) an unfiltered one. The extended approach, applied to weather-filtered data for separation distances of 95 and 173 m gave uncertainty estimates in best correspondence with an independent reference method. The introduced correction for systematic flux differences considerably reduced the overestimation of the two-tower based uncertainty of net CO2 flux measurements and decreased the sensitivity of results to tower distance. We therefore conclude that corrections for systematic flux differences (e.g., caused by different environmental conditions at both EC towers) can help to apply the two-tower approach to more site pairs with less ideal conditions.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)138662
|a Hendricks-Franssen, Harrie-Jan
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)129461
|a Graf, Alexander
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)144420
|a Schmidt, Marius
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, H.
|b 4
|u fzj
773 _ _ |0 PERI:(DE-600)2158181-2
|a 10.5194/bg-12-1205-2015
|g Vol. 12, no. 4, p. 1205 - 1221
|n 4
|p 1205 - 1221
|t Biogeosciences
|v 12
|x 1726-4189
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/203175/files/bg-12-1205-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203175/files/bg-12-1205-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203175/files/bg-12-1205-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203175/files/bg-12-1205-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203175/files/bg-12-1205-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203175/files/bg-12-1205-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:203175
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145951
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138662
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129461
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144420
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129549
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b BIOGEOSCIENCES : 2013
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a FullTexts
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21