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Abstract. The use of eddy covariance (EC) CO2 flux mea-

surements in data assimilation and other applications re-

quires an estimate of the random uncertainty. In previous

studies, the (classical) two-tower approach has yielded robust

uncertainty estimates, but care must be taken to meet the of-

ten competing requirements of statistical independence (non-

overlapping footprints) and ecosystem homogeneity when

choosing an appropriate tower distance. The role of the tower

distance was investigated with help of a roving station sepa-

rated between 8m and 34 km from a permanent EC grassland

station. Random uncertainty was estimated for five separa-

tion distances with the classical two-tower approach and an

extended approach which removed systematic differences of

CO2 fluxes measured at two EC towers. This analysis was

made for a data set where (i) only similar weather condi-

tions at the two sites were included, and (ii) an unfiltered

one. The extended approach, applied to weather-filtered data

for separation distances of 95 and 173m gave uncertainty

estimates in best correspondence with an independent refer-

ence method. The introduced correction for systematic flux

differences considerably reduced the overestimation of the

two-tower based uncertainty of net CO2 flux measurements

and decreased the sensitivity of results to tower distance. We

therefore conclude that corrections for systematic flux differ-

ences (e.g., caused by different environmental conditions at

both EC towers) can help to apply the two-tower approach to

more site pairs with less ideal conditions.

1 Introduction

The net ecosystem exchange of CO2 between the land sur-

face and the atmosphere (NEE) can be determined with the

eddy covariance (EC) method. Eddy covariance CO2 flux

measurements are commonly used to analyze the interactions

between terrestrial ecosystems and the atmosphere which is

important for the understanding of climate–ecosystem feed-

backs. In this regard reliable EC data with appropriate uncer-

tainty estimates are crucial for many application fields, such

as the evaluation and improvement of land surface models

(e.g., Braswell et al., 2005; Hill et al., 2012; Kuppel et al.,

2012).

When using the term “uncertainty”, we here focus on

the random error following the definition in Dragoni et

al. (2007). It differs from the systematic error in that it is un-

predictable and impossible to correct (but can be quantified).

Uncertainty does not accumulate linearly but “averages out”

and can be characterized by probability distribution functions

(Richardson et al., 2012). Systematic errors are considered to

remain constant for a longer time period (> several hours).

Ideally they can be corrected, but in the case of EC mea-

surements this is still limited by either our understanding of

various error sources or insufficient background data. Sys-

tematic errors arise not only from instrumental calibration

and data processing deficits, but also from unmet underlying

assumptions about the meteorological conditions (Richard-

son et al., 2012). A main assumption is that turbulence is

always well developed in the lowest atmospheric boundary

layer and responsible for the mass transport while horizontal

divergence of flow and advection are assumed to be negligi-

ble (Baldocchi, 2001). Moreover, the EC method is based on

the mass conservation principle, which requires the assump-

tion of steady-state conditions of the meteorological vari-
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ables (Baldocchi, 2003). In the case of CO2 fluxes, night-

time respiration is often underestimated due to low wind

velocity conditions and a temperature inversion which hin-

ders the upward carbon dioxide transport (Baldocchi, 2001).

Hence, night-time data are commonly rejected for further

analysis (Barr et al., 2006).

After a possible correction of the EC flux data for system-

atic errors a random error will remain which can arise from

different sources such as (a) the assumption of a constant

footprint area within a measurement interval and the negli-

gence of flux footprint heterogeneity (e.g., due to temporal

variability of wind direction, wind speed and atmospheric

stability which causes temporal variations of the footprint

area); (b) turbulence sampling errors which are related to the

fact that turbulence is a highly stochastic process and espe-

cially the sampling or not sampling of larger eddies is asso-

ciated with considerable random fluctuations of fluxes, even

if they are already averaged over a 30min period; and (c) in-

strumentation deficits that can, e.g., cause random errors in

the measured variables (such as the CO2 mixing ratio and

the vertical wind velocity) used to calculate the net CO2 flux

(Aubinet et al., 2011, p. 179; Flanagan and Johnson, 2005).

Within the past decade, several approaches have been pro-

posed to quantify the uncertainty of eddy covariance CO2
flux measurements. With the “two-tower” or “paired tower”

approach simultaneous flux measurements of two EC towers

are analyzed (Hollinger et al., 2004; Hollinger and Richard-

son, 2005). For the uncertainty quantification with the two-

tower approach, it is necessary that environmental conditions

for both towers are nearly identical (Hollinger et al., 2004;

Hollinger and Richardson, 2005). However, most eddy co-

variance sites do not have a nearby second EC tower to pro-

vide nearly identical environmental conditions. Therefore,

Richardson et al. (2006) introduced the “one-tower” or “24 h

differencing” method which is based on the two-tower ap-

proach. The main difference is that the uncertainty estimate

is based on differences between fluxes measured on subse-

quent days if environmental conditions were similar on both

days. Because most often environmental conditions are not

the same on two subsequent days (Liu et al., 2006), the ap-

plicability of this method suffers from a lack of data and the

random error is overestimated (Dragoni et al., 2007). The

model residual approach (Dragoni et al., 2007; Hollinger and

Richardson, 2005; Richardson et al., 2008) calculates CO2
fluxes with a simple model and compares calculated val-

ues with measured values. The model residual is attributed

to the random measurement error. The method is based on

the assumption that the model error is negligible, which is

however a very questionable assumption. Alternatively, if

the high-frequency raw data of an EC tower are available,

uncertainty can be estimated directly from their statistical

properties (Billesbach, 2011). Finkelstein and Sims (2001)

introduced an operational quantification of the instrumental

noise and the stochastic error by calculating the auto- and

cross-covariances of the measured fluxes. This method was

implemented into a standard EC data processing scheme by

Mauder et al. (2013). The advantage is that a second tower

or the utilization of additional tools such as a simple model

to estimate the EC measurement uncertainty is no longer re-

quired. However, many data users do not have access to the

raw-data but to processed EC data only. Moreover, a large

amount of solid metadata about the setup of the EC mea-

surement devices is required (but often not provided at sec-

ond hand) to obtain reliable raw-data based uncertainty esti-

mates adequately. Therefore a two-tower based approach has

still a large group of users. In particular with regard to pairs

of nearby towers from local clusters which play an increas-

ing role in the monitoring strategies of for example ICOS

and NEON, and have already been employed in case stud-

ies (e.g., Ammann et al., 2007). Important advantages of the

two-tower approach are (1) its simplicity and user friendli-

ness, (2) its usability for relatively short non-gap-filled time

series of several months and (3) the independence of a model.

The classical two-tower approach (Hollinger et al., 2004;

Hollinger and Richardson, 2005; Richardson et al., 2006) is

based on the assumption that environmental conditions for

both EC towers are identical and flux footprints should not

overlap, to guarantee statistical independence. Hollinger and

Richardson (2005) use threshold values for three variables

(photosynthetically active photon flux density PPFD, temper-

ature and wind speed) to determine whether environmental

conditions are equivalent. Independent of this definition, our

understanding of “environmental conditions” includes both

weather conditions and land surface properties such as soil

properties (texture, density, moisture, etc.), plant characteris-

tics (types, height, density, rooting depth, etc.), nutrient avail-

ability and fauna (micro-organisms, etc.), which are irregu-

larly distributed and affect respiration and/or photosynthesis.

Strictly speaking, if footprints do not overlap 100%, the as-

sumption of identical environmental conditions is already not

fulfilled. When applying a two-tower based approach it is im-

portant to assure that systematic differences of the measured

fluxes, which are partly caused by within-site or among-site

heterogeneity, are not attributed to the random error estimate

of the measured NEE. Our assumption that even within a site

with apparently one uniformly distributed vegetation type

(and for very short EC tower distances) land surface hetero-

geneity can cause significant spatial and temporal variability

in measured NEE is, e.g., supported by Oren et al. (2006).

They found that the spatial variability of ecosystem activity

(plants and decomposers) and leaf area index within a uni-

form pine plantation contributes to about half of the uncer-

tainty in annual eddy covariance NEE measurements while

the other half is attributed to micrometeorological and statis-

tical sampling errors. This elucidates the relevance of con-

sidering systematic flux differences caused by within site

ecosystem heterogeneity when calculating a two-tower based

uncertainty estimate.

Given the fact that site-specific, adequate uncertainty es-

timates for eddy covariance data are very important but still
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Table 1. Measurement periods and locations of the permanent EC towers in Rollesbroich (EC1) and Merzenhausen (EC3) and the roving

station (EC2).

Coordinates Site name Distance Measurement period Alt.

to EC1 (m)

EC1 50.6219142N/6.3041256 E Rollesbroich – 13.05.2011–15.07.2013 514.7

EC2 50.6219012N/6.3040107 E Rollesbroich 8m 29.07.2011–06.10.2011 514.8

50.6219012N/6.3040107E 05.03.2013–15.05.2013

50.6217990N/6.3027962E Rollesbroich 95m 07.10.2011–15.05.2012 516.3

50.6210472N/6.3042120E 01.07.2013–15.07.2013 517.3

50.6217290N/6.3016925E Rollesbroich 173m 24.05.2012–14.08.2012 517.1

50.5027500N/6.5254170E Kall-Sistig 20.5 km 14.08.2012–01.11.2012 498.0

15.05.2013–01.07.2013

EC3 50.9297879N/6.2969924 E Merzenhausen 34 km 10.05.2011–16.07.2013 93.3

often neglected due to a lack of resources, we are aiming to

advance the two-tower approach so that it can also be applied

if environmental conditions at both eddy covariance towers

are not very similar.

The main objectives of this study were (1) to analyze the

effect of the EC tower distance on the two-tower based CO2
flux measurement uncertainty estimate and (2) to extend the

two-tower approach with a simple correction term that re-

moves systematic differences in CO2 fluxes measured at the

two sites. This extension follows the idea of the extended

two-tower approach for the uncertainty estimation of energy

fluxes presented in Kessomkiat et al. (2013). The correction

step is important for providing a more reliable random er-

ror estimate. In correspondence with these objectives we an-

alyzed the following questions. What is an appropriate EC

tower distance to get a reliable two-tower based uncertainty

estimate? Can the random error be quantified in reasonable

manner with the extended two-tower approach, even though

environmental conditions at both EC towers are clearly not

identical? The total random error estimated with the raw-data

based method (Mauder et al., 2013) was used as a reference

to evaluate our extended two-tower approach based results.

2 Test sites and EC tower setup

The Rollesbroich test site is an extensively used grassland

site, located in the Eifel region of western Germany (Fig. 1).

The mean temperature in Rollesbroich is ∼ 7.7 ◦C and the

mean precipitation is ∼ 1033mm per year (Korres et al.,
2010). Predominating soil types at the site are Cambisols

with a high clay and silt content (Arbeitsgruppe BK50,

2001). The grass species grown in Rollesbroich are mainly

ryegrass, particularly perennial ryegrass (Lolium perenne),

and smooth meadow grass (Poa pratensis) (Korres et al.,

2010). A permanent eddy covariance tower (EC1) is installed

at the Rollesbroich site since May 2011 at a fixed position.

The measurement height of the sonic anemometer (CSAT3,

Campbell Scientific, Logan, UT, USA) and the open-path gas

analyzer (Li7500, Li-Cor, Lincoln, NE, USA) is 2.6m above

ground. The canopy height was measured every 1–2 weeks

and varied between 0.03 and 0.88m during the measure-

ment period. A second EC tower, the roving station (EC2),

has been installed at four different distances (8, 95, 173

and 20.5 km) from EC1 for time periods ranging between 3

and 7.5 months (Table 1). The EC2 location “Kall-Sistig”

20.5 km northeast of Rollesbroich is another grassland site

with similar environmental conditions as Rollesbroich. The

vegetation in Kall-Sistig is extensively managed C3 grass,

the same as for Rollesbroich. However, the average plant

height measured between 14 August and 30 October 2012

was lower (∼ 0.15m) than the respective average for Rolles-
broich (∼ 0.2m), which is also true for the plant height mea-
sured in May and June 2012 (Kall-Sistig: ∼ 0.22m; Rolles-
broich: ∼ 0.29m). As in Rollesbroich, clayey-silty Cam-
bisols are most widespread (Arbeitsgruppe BK50, 2001).

The mean temperature for the entire measurement interval

in Kall-Sistig (Table 1) measured at the EC station is 11.4 ◦C

and the soil moisture 32% compared to 11.0 ◦C and 35%

in Rollesbroich (same time interval for averaging). Addi-

tionally, a third EC tower was located in Merzenhausen at

∼ 34 km distance to EC1 (Fig. 1). Merzenhausen (MH) is an
agricultural site, where winter wheat was grown during the

measurement period. Both the land use conditions and the

average weather conditions differ from those in Rollesbroich

and Kall-Sistig. The climate at the lowland site Merzen-

hausen is comparable to the one in Selhausen at a distance

of 13 km from Merzenhausen, where the mean precipitation

is ∼ 690mma−1 and the yearly mean temperature ∼ 9.8 ◦C

(Korres et al., 2010). The soils are mainly Luvisols with

some patches of Kolluvisols (Arbeitsgruppe BK50, 2001).

The measurement devices of EC2 and EC3 are the same as

the EC1 devices and were installed 2.6m above ground as

well. Both, the sonic anemometers and the open-path gas an-

alyzers have been calibrated every 1–3 months thoroughly
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Figure 1. Eddy covariance (EC) tower locations in the Rur Catchment (center) including the Rollesbroich test site (left).

and consistently. Details on the EC data acquisition are sum-

marized in Sect. 3.1.

Rollesbroich is part of the TERENO network (Zacharias

et al., 2011). Information and additional data were collected

showing that land surface properties are spatially heteroge-

neous distributed at the Rollesbroich site: (1) single fields

at the Rollesbroich site are managed by different farmers;

information the land owners provided, as well as periodic

camera shots and grass height measurements around the EC

towers indicated that the timing of fertilization and grass cut-

ting as well as the amount of manure applied varied between

the single fields during the measurement period; (2) soil type

distribution as displayed in the German soil map shows het-

erogeneity (Arbeitsgruppe BK50, 2001); (3) soil carbon and

nitrogen pools [g kg−1] as well as bulk density [g cm−3]

and content of rock fragments [%] measured from April–

May 2011 in three soils horizons at 94 locations across the

Rollesbroich site are spatially highly variable (H. Schiedung

2013, personal communication); (4) during the eddy covari-

ance measurement period, soil moisture and soil temperature

data were collected in 10min. resolution at three depths (5,

20 and 50 cm) and 84 points by the wireless sensor network

(“SoilNet”; Bogena et al., 2009), calibrated for the Rolles-

broich site by Qu et al. (2013). SoilNet data shows that soil

moisture is heterogeneously distributed within the Rolles-

broich site (Qu et al., 2014).

3 Data and methods

3.1 EC data processing

The EC raw data were measured with a frequency of 20Hz

and fluxes were processed for flux intervals of 30min. The

complete processing of the data was performed with the

TK3.1 software (Bayreuth, Department of Micrometeorol-

ogy, Germany; Mauder and Foken, 2011), using the standard-

ized strategy for EC data calculation and quality assurance

presented in detail by Mauder et al. (2013). The strategy in-

cludes established EC conversions and corrections such as,

e.g., correction of spectral loss (Moore, 1986) and correc-

tion for density fluctuations (Webb et al., 1980). It includes

tests on high-frequency data (site-specific plausibility lim-

its, statistical spike detection) as well as on processed half-

hourly fluxes such as stationarity and integral turbulence tests

(Foken and Wichura, 1996). The tests on half-hourly fluxes

are the basis for a standardized quality flagging according to

Mauder and Foken (2011) that classifies flux measurements

as high (0), moderate (1) or low (2) quality data. For this anal-

ysis only flux measurements assigned to 0 or 1 were used,

while low-quality data were treated as missing values. Be-

sides quality flags TK3.1 also provides footprint estimates

(Kormann and Meixner, 2001) and uncertainty estimates that

were used for interpreting and analyzing flux data. To avoid

introduction of additional uncertainty no gap filling of flux

time series was performed.
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3.2 Uncertainty estimation based on the two-tower

approach

The two-tower approach (Hollinger et al., 2004; Hollinger

and Richardson, 2005; Richardson et al., 2006) defines the

random error of NEE eddy covariance measurements as the

standard deviation σ (δ) of the difference between the CO2
fluxes [µmolm−2 s−1] simultaneously measured at two dif-

ferent EC towers (NEE1, NEE2):

σ (δ) =
σ (NEE1−NEE2)√

2
. (1)

Based on Eq. (1) we calculated the two-tower based uncer-

tainty estimates using the NEE1 data measured at the perma-

nent EC tower in Rollesbroich (EC1) and the NEE2 data of a

second tower which was either the roving station (EC2) or –

in case of the 34 km EC tower distance – another permanent

EC tower (EC3, Table 1).

For comparison, the measurement uncertainty σ (δ) was

calculated separately for each EC tower distance (Table 1)

and independently for each of the following schemes:

1. The classical two-tower approach (Hollinger et al.,

2004; Hollinger and Richardson, 2005; Richardson et

al., 2006).

2. The classical two-tower approach including a filter for

similar weather conditions (Sect. 3.4).

3. The extended two-tower approach with an added cor-

rection for systematic flux differences (sfd-correction;

Sect. 3.3), without weather filter.

4. The extended two-tower approach with sfd-correction

and the previously applied weather filter.

The uncertainty estimate of the two-tower approach is ob-

tained by dividing the NEE data series into several groups

(“bins”) according to the flux magnitude and then using

Eq. (1) to calculate the standard deviation σ (δ) for each

group (Richardson et al., 2006). Finally, a linear regression

function between the flux magnitude and the standard de-

viation can be derived. The linear correlation of the uncer-

tainty and the flux magnitude can be explained by the fact

that the flux magnitude is a main driving factor for the ran-

dom error and can explain about 63% of the variance in the

CO2 flux error as shown in a case study by Richardson et

al. (2006). Accordingly, we calculated the standard deviation

σ (δ) [µmolm−2 s−1] based on 12 groups of the CO2 flux

magnitude; six groups for positive and six groups for nega-

tive fluxes. (NEE is positive if the amount of CO2 released

to the atmosphere via respiration is higher than the amount

of CO2 assimilated during photosynthesis. In contrast, nega-

tive NEE values denote a higher CO2 uptake and a net flux

from the atmosphere into the ecosystem.) Fixed class limits

for the flux magnitude would have led to a different num-

ber of samples in each group. Now class limits were set such

that all groups with positive NEE values had an equal amount

of half-hourly data, the same holds for all groups with neg-

ative NEE values. For each single group the standard devia-

tion σ(δ)was calculated using the single half-hourly flux dif-

ferences of NEE1 and NEE2. The corresponding mean NEE

magnitude for each group member was determined by aver-

aging all half-hourly means of NEE1 and NEE2 in the respec-

tive group. Then, the linear regression equation was derived

separately for negative and positive NEE values using the six

calculated standard deviations σ(δ) and the six mean NEE

values. This procedure was carried out for each data set of

the five EC tower distances and again for each of the four un-

certainty estimation schemes so that altogether 20× 2 linear
regression equations were derived. The significance of the

correlation between the NEE magnitudes and the standard

deviations σ(δ) was tested with the p-value determined with

Student’s t-test based on Pearson’s product moment correla-

tion coefficient r . Moreover, the 95% confidence intervals of

the slope and the intercept for each linear regression equa-

tion were determined. The linear regression equations were

calculated imposing as constraint an intercept ≥ 0, because a
negative standard deviation is not possible. With those linear

regression equations, the uncertainty for the individual half-

hourly NEE measurement values of the permanent EC tower

in Rollesbroich (EC1) were estimated using the individual

half-hourly NEE1 values [µmolm
−2 s−1] as input (x) to cal-

culate the corresponding uncertainty σ (δ) [µmolm−2 s−1]

(y).

The described calculation of the individual NEE uncer-

tainty values was done for all half-hourly NEE data, includ-

ing those data points that were discarded by the weather fil-

ter (Sect. 3.4) and/or the sfd-correction (Sect. 3.3). Hence,

for each of the four two-tower based uncertainty estimation

schemes the same amount of individual NEE uncertainty val-

ues was generated. These mean uncertainty estimates were

used to evaluate the effect of the EC tower distance as

well as the sfd-correction and the weather filter on the two-

tower based uncertainty estimation. Even though Hollinger

et al. (2004) and Richardson and Hollinger (2005) already

pointed out that the two-tower approach assumes similar en-

vironmental conditions and non-overlapping footprints, we

applied the classical approach for all EC tower distances,

even if these basic assumptions were not fulfilled, to allow

for a comparison of the results before and after the usage of

the weather filter and the sfd-correction (extended two-tower

approach).

3.3 Correction for systematic flux differences

(sfd-correction)

Different environmental conditions and other factors such as

instrumental calibration errors can cause systematic flux dif-

ferences between two towers. Because these flux differences

are not inherent to the actual random error of the measured

NEE at one EC tower station they lead to an overestimation
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of the two-tower approach based uncertainty. Therefore, we

extended the classical two-tower approach with a simple cor-

rection step for systematic flux differences (sfd-correction).

The reason why systematic flux differences can statistically

be separated quite easily from random differences of the EC

flux measurements is their fundamentally different behavior

in time: random differences fluctuate highly in time whereas

systematic differences tend to be constant over time or vary

slowly. The sfd-correction introduced is similar to the second

correction step in Kessomkiat et al. (2013, Eq. (6) therein),

but adapted to the measured NEE instead of latent and sen-

sible heat fluxes. An averaging time interval of 12 hours was

used to calculate the running mean for the sfd-correction.

For each moving average interval, the mean NEE12h of one

EC tower (separately for EC1 and EC2) [µmolm−2 s−1] and

the mean CO2 flux averaged over both EC towers NEE2T_12h
[µmolm−2 s−1] were calculated to define the sfd-correction

term which was used to calculate the corrected NEEcorr
[µmolm−2 s−1]:

NEEcorr =
NEE2T_12hr

NEE12h
×NEE, (2)

where NEE is the single half-hourly, processed NEE value

[µmolm−2 s−1] of one EC tower. Only if both NEE data,

NEE−EC1− for the permanent EC1 tower and NEE−EC2− for

the second tower, were available at a particular half-hourly

time step and if both values were either positive or nega-

tive, the respective data were included to calculate the cor-

rection term. The running averages were only calculated if

at least 50% of the data for NEE−EC1− and NEE−EC2− re-

mained for averaging in that particular window. Due to the

frequent occurrence of gaps in the data series the amount of

available NEEcorr values considerably decreased by applying

stricter criteria like 70% or 90% data availability (Table A2

in Appendix). We assume a 12 h averaging period to be long

enough to exclude most of the random error part but short

enough to consider daily changes of systematic flux differ-

ences. For a 6 h interval for instance, the uncertainty of the

mean NEE is usually higher. For larger window sizes (24 or

48 h) further analysis was hampered by too many data gaps

– i.e., the 50% criterion was hardly ever fulfilled and not

enough averages remained to allow for the two-tower based

uncertainty estimation (Table A2). The correction was done

separately for positive and negative fluxes, due to the dif-

ferent sources, properties and magnitudes of the CO2 flux

measurements and different errors for daytime (negative) and

night-time (positive) fluxes (e.g., Goulden et al., 1996; Oren

et al., 2006; Wilson et al., 2002).

The final sfd-corrected NEE1corr values for EC1 and

NEE2corr values for EC2 should not be understood as cor-

rected NEE flux data. They were used only to enhance the

two-tower based uncertainty estimation in a way that sys-

tematic flux differences which cause an overestimation of the

uncertainty are filtered out. Moreover, systematic flux differ-

ences at two EC towers are not to be confused with system-

atic errors, which are independent of the uncertainty estima-

tion method and optimally corrected before the random error

is estimated.

3.4 Filter for weather conditions

For larger distances of two EC towers, such as the 20.5 and

34 km distance in this study, different weather conditions

can cause differences of the measured fluxes in addition to

the different land surface properties. Some weather variables

(e.g., temperature) are following a clear diurnal and annual

course and differences in, e.g., temperature at two EC tow-

ers are therefore relatively constant. This is expected to cause

rather systematic differences in the measured NEE which can

be captured with the sfd-correction. However, other variables

such as wind speed or incoming shortwave radiation are spa-

tially and temporally much more variable, for example re-

lated to single wind gusts or cloud movement. Differences

in the measured fluxes at two EC towers caused by those

spatial–temporally highly variable weather variables cannot

be captured well with the sfd-correction term due to this “ran-

dom character”. However, a weather filter can account for

this because it compares the differences in weather variables

at each single time step. Therefore a filter for similar weather

conditions was applied in addition to the sfd-correction fol-

lowing Hill et al. (2012) and Richardson et al. (2006) to only

include half-hourly NEE data, if the weather conditions at

the second EC tower are similar to those at the permanent

EC1 tower location in Rollesbroich. Following the definition

in Richardson et al. (2006), similar weather conditions were

defined by a temperature difference < 3 ◦C; wind speed dif-

ference < 1m/s and difference in PPFD < 75 µmolm−2 s−1.

The weather filter was applied before the (classical) uncer-

tainty estimation and the sfd-correction. As shown, e.g., in

Tsubo and Walker (2005), the incoming shortwave radia-

tion (or solar irradiance SI) and the photosynthetically active

radiation (PAR) are linearly correlated. Accordingly SI and

PPFD measured at the EC1 station in Rollesbroich were also

linearly correlated. Because direct PPFDmeasurements were

not available for all measurement periods, we derived a linear

regression equation on the basis of all SI and PPFD data for

the permanent EC tower station (EC1). Using this equation,

missing PPFD values were estimated if only SI but no PPFD

data were available at a certain time step.

3.5 Footprint analysis

The footprint analysis was applied to quantify the percentage

footprint overlap of the two EC-stations during the measure-

ment periods. This information was not used to filter the data

but to allow for a better understanding of the mean uncer-

tainty estimates for the different scenarios. Using the ana-

lytical model of Kormann and Meixner (2001) implemented

in the TK3.1 software (Mauder and Foken, 2011), a grid of

estimated source weights (resolution 2m, extension 1 km by
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1 km) was computed for each half-hour and station position.

The overlap between the footprints of two simultaneously

measuring towers was then quantified as

O12(t) =
N

∑

x=1

M
∑

y=1

min(f1(x,y, t),f2(x,y, t)). (3)

The indices 1 and 2 indicate the tower and t the time (in our

case, half-hour). N and M are the number of pixels in east–

west and north–south direction, x and y the respective run-

ning indices. The minimum function min includes the source

weight f computed for the respective tower, x and y loca-

tion, and half-hour. TheO is 1 if both source weight grids are

identical, and 0 in the case of no overlap. During stable con-

ditions, the footprint area of a tower increases and can result

in considerable source weight contributions from outside the

modeling domain. Assuming that two footprints which over-

lap highly in the modeling domain likely continue to overlap

outside the modeling domain, O as defined above might be

low-biased in such cases. We therefore additionally consid-

ered a normalized versionO/min(66f1,66f1) as an upper

limit estimate of the overlap. The overlap for the additional

sites Kall and Merzenhausen more than 20 km away was as-

sumed to be zero.

3.6 Comparison measures

To compare and evaluate the two-tower based uncertainty

estimates, we calculated random error estimates based on

Mauder et al. (2013) as a reference. This reference method is

independent of the two-tower based approach, because data

of only one EC tower are used to quantify the random error

of the measured fluxes and raw data instead of the processed

fluxes are used. The raw-data based random error estimates

– the instrumental noise σ noisecov and the stochastic error σ
stoch
cov

– were calculated independently. Mauder et al. (2013) de-

termine the instrumental noise based on signal autocorrela-

tion. Following Finkelstein and Sims (2001) the stochastic

error is calculated as the statistical variance of the covari-

ance of the flux observations. Generally, σ noisecov was consider-

ably lower than σ stochcov . The total raw-data based random error

σcov [µmolm
−2 s−1] was calculated by adding σcov noise and

σcov stoch “in quadrature” (σcov =
√

σcov stoch2 + σcov noise2)

according to Aubinet et al. (2011, p.176). The mean ref-

erence σcov used for the evaluation of the two-tower based

random error estimates was calculated by averaging the sin-

gle half-hourly σcov values for the permanent EC1 tower in

Rollesbroich. In order to be consistent with the two-tower

based calculations, exactly the same half-hourly time steps

of the EC1 data series used for the two-tower based uncer-

tainty estimation were used to calculate the corresponding

mean reference values σcov. As indicator for the performance

of the two-tower based uncertainty estimation schemes ap-

plied for the five different EC tower distances, the relative

difference1σcov [%] of a two-tower based uncertainty value

[µmolm−2 s−1] and σcov [µmolm
−2 s−1] was calculated:

1σcov [%]=
σ (δ) − σcov

σcov
× 100. (4)

Then, 1σcov values were compared for the different EC

tower separation distances and two-tower based uncertainty

estimation schemes. The performance of the two-tower based

uncertainty estimation was considered better if σcov [%] was

closer to zero.

4 Results

4.1 Classical two-tower based random error estimates

Figures 2 and 3 show the linear regressions of the random

error σ(δ) (also referred to as “standard error” or “uncer-

tainty”) as function of the NEE magnitude according to the

classical two-tower approach for the different EC tower dis-

tances without weather filter (Fig. 2) and with weather filter

(Fig. 3). The dashed linear regression lines denote that the

linear correlation between σ(δ) and NEE is weak (p > 0.1),

which is in particular true for the positive NEE values mea-

sured for 173m and 20.5 km EC tower distances as well as

for the negative NEE values for 20.5 and 34 km distance. The

95% confidence intervals of the respective slopes and the in-

tercepts are summarized in the Appendix (Table A1). Un-

certainty estimation with the classical two-tower approach

is critical for those larger distances because measured flux

differences caused by different environmental conditions at

both EC towers can superimpose the random error signal

which, e.g., originates from instrumental or turbulence sam-

pling errors. This weakens the correlation of the random error

and the flux magnitude. This is not surprising since Hollinger

et al. (2004) and Richardson and Hollinger (2005) already

pointed out that similar environmental conditions are a basic

assumption of the two-tower approach. Therefore, statements

of how the weather filter affects the mean uncertainty esti-

mate σ(δ) for those large distances need to be treated with

caution.

The weather filtering only increased the correlation be-

tween the flux magnitude and the random error σ(δ) for

positive fluxes for separation distances of 173m and 20 km

whereas in most cases the linear correlation was weakened,

mainly due to a decreased number of samples in each aver-

aging group of the NEE flux magnitude. Therefore, testing

stricter weather filter criteria (e.g., wind speed< 0.5m s−1,

PPFD< 50 µmolm−2 s−1, Temp< 2 ◦C), which caused a de-

cline of samples in each group from, e.g., n > 1000 to 24 or

less, resulted in little meaningful results.

As illustrated in Table 2, the mean NEE uncertainty esti-

mate based on the classical two-tower approach increased as

a function of EC tower distance. However, without applying

the weather filter, the mean uncertainty σ(δ)was nearly iden-

tical for the two largest distances (20.5 and 34 km), although,
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Table 2. Mean NEE uncertainty [µmolm−2 s−1] for five EC tower distances estimated with the classical two-tower approach, with and
without including a weather filter (σ(δ), σ(δ)f). and with the extended two-tower approach (sfd-correction), also with and without including

a weather filter (σ(δ)corr, σ(δ)corr,f). The table also provides the random error σcov [µmolm
−2 s−1] estimated with the raw-data based

reference method (Mauder et al., 2013).

EC tower N σ (δ) (1σcov) σ (δ)f (1σcov) σ (δ)corr (1σcov) σ (δ)corr,f (1σcov) σcov
distance

8m 3167 0.76 (18.8) 0.77 (20.5) 0.44 (−30.6) 0.44 (−30.8) 0.64

95m 3620 1.30 (116.7) 1.50 (149.4) 0.65 (8.2) 0.60 (0.2) 0.60

173m 2410 2.04 (98.5) 1.82 (77.0) 1.03 (−0.3) 1.00 (−2.5) 1.03

20.5 km 2574 2.72 (200.6) 2.35 (159.7) 1.52(67.8) 1.16 (28.7) 0.91

34 km 15571 2.73 (274.7) 2.86 (292.4) 1.18 (61.5) 1.14 (56.8) 0.73

mean 1.91 1.86 0.98 0.93 0.78

(1σcov): relative differences [%] between two-tower based uncertainty estimates and the references value σcov (Eq. 4)

e.g., the land cover and management in Merzenhausen (EC3

tower at 34 km separation) were different from the Rolles-

broich site. As a result of the weather filtering, the mean

uncertainty was less overestimated for the distances 173m

and 20.5 km. However, for the 95m and 34 km distance, the

overestimation of the uncertainty estimate increased by the

weather filtering (Table 2). This implies that for the classical

two-tower approach (without sfd-correction) weather filter-

ing did not clearly reduce the overestimation of the uncer-

tainty for largest EC tower distances (20.5 and 34 km) where

weather filtering is expected to be particularly relevant.

Comparing the mean uncertainty estimates of the classi-

cal two-tower approach with the reference random error es-

timates σcov indicates that both with and without weather

filter the uncertainties were overestimated (Table 2), for all

EC tower differences. This could be expected for the large

distances, because basic assumptions for the application of

the classical two-tower approach are violated for these large

distances. But results illustrate that even for short EC tower

distances NEE uncertainty estimated with the classical two-

tower approach is larger than the raw-data based estimates

(Table 2).

4.2 Extended two-tower approach

The scatter plots in Fig. 4 illustrate the effect the sfd-

correction (Eq. 2) had on the difference of the NEE data si-

multaneously measured at both EC towers (NEE−EC1− and

NEE−EC2−). The sfd-correction reduced the bias and scatter-

ing, because systematic differences of the measured fluxes,

e.g. induced by different environmental conditions, were re-

moved. As expected, the effect of the sfd-correction was con-

siderably higher for the larger EC tower distances because

environmental conditions are also expected to differ more if

the distance of two locations is larger. For the 8m EC tower

distance for instance, the effect of the sfd-correction is very

minor because footprints are often nearly overlapping. How-

ever, for the EC tower distances ≥ 173m, the bias and scat-

tering of NEE−EC1− and NEE−EC2− was considerably re-

duced by the sfd-correction.

A comparison of Figs. 2 and 5 illustrates how the sfd-

correction affected the linear regression of the NEE standard

error as function of NEE flux magnitude: the sfd-correction

considerably enhanced the correlation of NEEcorr and the

standard error σ(δ)corr for the EC tower distances 20.5 and

34 km from R2 ≥ 0.15 to R2 ≥ 0.43.
Applying the sfd-correction (without weather filter) re-

duced the mean uncertainty value by 41.6 to 56.9% for the

EC tower distances from 8m to 34 km. The relative differ-

ences 1σcov indicate that the correction for systematic flux

differences considerably improved the two-tower based un-

certainty estimate for the distances > 8m (Table 2): the dif-

ference 1σcov was notably smaller (< 56.8%) for all dis-

tances except the 8m distance compared to 1σcov deter-

mined with the classical two-tower approach (< 274.7%).

The most considerable improvement was achieved for the

95m EC tower distance and the 173m distance. Additional

application of the weather filter (Fig. 6) on the sfd-corrected

NEEcorr data reduced the mean uncertainty estimate σ(δ)corr
by 23.3 and 2.9% for the 20.5 km and the 34 km EC tower

distance and reduced 1σcov by 57.7 and 7.7%. The effect of

the weather filter on the uncertainty estimates of the shorter

EC tower distances was very minor (Table 2). The uncer-

tainty estimates σ(δ)corr,f determined with the extended two-

tower approach agree best with the independent reference

values σcov for the EC tower distances 95 and 173m, sug-

gesting that those distances were most suitable for the appli-

cation of the extended two-tower approach.

4.3 Discussion

The results show that the two-tower based uncertainty es-

timates (both classical and extended two-tower approach)

were smallest for the 8m distance. This can be explained

with the results of the footprint analysis: while the average

percentage footprint overlap is 13% (normalized 19%) for

Biogeosciences, 12, 1205–1221, 2015 www.biogeosciences.net/12/1205/2015/



H. Post et al.: Uncertainty analysis of eddy covariance CO2 flux measurements 1213

Figure 2. NEE uncertainty σ(δ) determined with the classical two-

tower approach as function of the NEE flux magnitude for the EC

tower distances 8m (a), 95m (b), 173m (c), 20.5 km (d) and 34 km

(e); dashed line: linear correlation not significant (p > 0.1).

the 95m EC tower distance and only 4% (7%) for the 173m

EC tower distance, it is 68% (80%) for the 8m EC tower

distance. The stronger overlap of the 8m distance footprint

areas is associated with a more frequent sampling of the

same eddies. As a consequence, part of the random error

was not captured with the two-tower approach. If EC tow-

ers are located very close to each other (< 10m) and the

footprint overlap approaches 100%, only instrumental errors

and stochasticity related to sampling of small eddies will

be captured with the two-tower based uncertainty estimate.

Because the EC measurements are statistically not indepen-

dent if the footprints are overlapping, the classical EC tower

method is not expected to give reliable uncertainty estimates

for very short EC tower distances (Hollinger et al., 2004;

Hollinger and Richardson, 2005). However, without applying

the sfd-correction, the mean uncertainty estimate σ(δ) was

higher than the raw-data based reference value σcov which

Figure 3. NEE uncertainty σ(δ) determined with the classical two-

tower approach as function of the NEE flux magnitude including the

application of the weather filter for the EC tower distances 8m (a),

95m (b), 173m (c), 20.5 km (d) and 34 km (e); dashed line: linear

correlation not significant (p > 0.1).

includes both the instrumental noise σ noisecov and the stochas-

tic error σ stochcov . The raw-data based σ noisecov itself was only

0.04 µmolm−2 s−1 of 0.64 µmolm−2s −1 for the data set

of the 8m EC tower distance. The mean uncertainty value

derived with the extended two-tower approach σ(δ)corr,f for

the same data set was lower than σ(δ) but still considerably

higher than σ noisecov , suggesting that even at 8m EC tower dis-

tance instrumentation errors were only a minor part of the

two-tower based uncertainty estimate. For the larger separa-

tion distances 95m or 173m with notably less footprint over-

lap, turbulence sampling errors are almost fully accounted

for by a two-tower approach. (It should be noted that forest

stations, with a typically larger aerodynamic measurement

height and footprint size, will require larger separation dis-

tances). However, different land surface properties and man-

agement are more likely for the larger separation distances
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Figure 4. Scatter of the NEE measured at EC1 (NEE−EC1−) and NEE measured at a second tower EC2/EC3 (NEE−EC2−) for the un-

corrected NEE (left) and the sfd-corrected NEEcorr (right) for the EC tower distances 8m (a), 95m (b), 173m (c), 20.5 km (d) and 34 km

(e).
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Figure 5. NEE uncertainty σ(δ)corr determined with the extended

two-tower approach as function of sfd-corrected NEEcorr magni-

tude (Eq. 2) for the EC tower distances 8m (a), 95m (b), 173m

(c), 20.5 km (d) and 34 km (e); dashed line: linear correlation not

significant (p > 0.1).

and can cause systematic flux differences that should not be

attributed to the random error estimate. As outlined in Sect. 2,

land surface properties related to management (e.g., nutrient

availably due to fertilization), soil properties (bulk density,

skeleton fraction), soil carbon–nitrogen pools, soil moisture

and soil temperature are heterogeneously distributed at the

Rollesbroich site. The effect of soil moisture, soil tempera-

ture and soil properties on CO2 fluxes (respiration mainly)

is well known (e.g., Herbst et al., 2009; Flanagan and John-

son, 2005; Xu et al., 2004; Lloyd and Taylor, 1994; Orchard

and Cook, 1983) as well as the role of grassland management

(e.g., Allard et al., 2007). Results indicate that an overestima-

tion of the two-tower based uncertainty caused by different

land surface properties in the footprint area of both EC tow-

ers can be successfully filtered out by the extended approach.

It should be noted that a shorter moving average interval of

Figure 6. NEE uncertainty σ(δ)corr determined with the extended

two-tower approach as function of sfd-corrected NEEcorr magni-

tude (Eq. 2) including application of the weather filter for the EC

tower distances 8m (a), 95m (b), 173m (c), 20.5 km (d) and 34 km

(e); dashed line: linear correlation not significant (p > 0.1).

the sfd-correction term (e.g., 6 h instead of the applied 12

hours window; Table A2) results in slightly lower uncertainty

estimates compared to the reference. This can be explained

by a possible “over-correction” of the NEE data related to

a too-short moving average interval for calculating the sfd-

correction term. It needs to be emphasized that the estimated

mean NEE values of the moving average intervals are associ-

ated with uncertainty. As mentioned, the moving average in-

terval should be long enough to exclude random differences

of the simultaneously measured fluxes but short enough to

limit the impact of non-stationary conditions. However, the

12 h running mean NEE1 and NEE2 values (NEE12) as well

as the respective means of NEE1 and NEE2 (NEE2T_12) used

to calculate NEEcorr (Eq. 2) are uncertain because they still

contain the random error part which cannot be corrected or

filtered out. This uncertainty in the mean is expected to be
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higher for a shorter averaging interval such as 6 h. Therefore,

completely correcting the difference in mean NEE slightly

overcorrects systematic differences in NEE. In general re-

sults were not very sensitive to different moving average

sizes of the sfd-correction term and data coverage percent-

ages defined for this interval (Table A3).

It is expected that systematic differences in measured

NEE caused by spatially variable land surface properties are

stronger during the night than during the day since they affect

respiration more directly than photosynthesis (see, e.g., Oren

et al., 2006). Moreover, during night-time and/or winter (pos-

itive NEE), some conditions associated with lower EC data

quality such as low turbulence, strong stability, and liquid

water in the gas analyzer path prevail more often than in sum-

mer and/or daytime (negative NEE). The less severe cases of

such conditions are not always completely eliminated by the

quality control. In time series of eddy-covariance fluxes this

typically shows up as implausible fluctuations of the flux dur-

ing calm nights. This is reflected by plots of NEE flux magni-

tude versus uncertainty (Figs. 2–3, 5–6) showing higher un-

certainties for positive compared to negative NEE data which

agrees with previous findings (e.g., Richardson et al., 2006).

At very large EC tower distances (20.5 km, 34 km) foot-

prints were not overlapping and the environmental condi-

tions were considerably different; in particular for the EC

tower setup Rollesbroich/Merzenhausen with different land

use (grassland/crop) and climate conditions. For those dis-

tances, the relative difference 1σcov between σcov and σ(δ)

(classical two-tower approach) was much larger than 1σcov
between σcov and σ(δ)corr,f (extended two-tower approach).

1σcov was reduced by 85.7% for the 20.5 km distance and

79.3% for the 34 km if both sfd-correction and weather fil-

ter were used. However, after applying the sfd-correction and

the weather filtering, the mean uncertainty estimate was still

higher than the raw-data based reference value (Table 2),

suggesting that for these large EC tower distances the sfd-

correction and the weather filter do not fully capture system-

atic flux differences and that uncertainty is still overestimated

by the extended two-tower approach. This can have different

reasons. We assume the major reason is that the weather fil-

ter is supposed to capture all measured flux differences that

can be attributed to different weather conditions at both EC

towers which cannot be captured with the sfd-correction. Ap-

plying stricter thresholds could increase the efficiency of the

weather filter but in our case the reduced data set was too

small to allow further analysis. In general, the weather fil-

ter did not improve the uncertainty estimates as much as the

sfd-correction. However, this does not imply that differences

in weather conditions are negligible when applying the ex-

tended two-tower approach for larger EC tower distances. In

fact the systematic part of measured EC flux differences be-

tween both towers caused by (steady, systematic) among-site

differences in weather conditions were already partly cap-

tured with the sfd-correction. In contrast, such systematic

differences were difficult to capture with the weather filter

because much lower thresholds would have been required.

The absolute corrected and weather filtered uncertainty

value σ(δ)corr,f [µmolm
−2 s−1] was slightly lower for the

34 km EC tower distance than for the 20.5 km EC tower

distance (Table 2). The raw-data based reference σcov
[µmolm−2 s−1] however was also smaller for the 34 km data

set than for the 20.5 km data set which can be related to the

different lengths and timing (i.e., different seasons) of the

measurement periods for each of the five EC tower distances:

The roving station was moved from one distance to another

within the entire measurement period of ∼ 27 months. Dur-
ing this entire time period of data collection, the length and

timing of the single measurement periods varied for the five

EC tower separation distances (Table 1). This is not opti-

mal because the random error is directly related to the flux

magnitude and the flux magnitude itself is directly related to

the timing of the measurements. Because in spring and sum-

mer flux magnitudes are higher, the random error is gener-

ally higher as well (Richardson et al., 2006). To reduce this

effect, we captured spring/summer as well as autumn/winter

months in each measurement period. However, the timing of

the measurements and the amount of data available were not

the same for the five EC data sets. In particular the perma-

nent EC tower in Merzenhausen was measuring consider-

ably longer (> 2 years) than the roving station did for the

other four EC tower distances. Therefore, differences of the

mean uncertainty estimates for the five measurement peri-

ods were partly independent of the EC tower distance. This

effect gets obvious when looking at the mean uncertainties

σcov estimated with the reference method, which should be

independent of the distance but were also found to be differ-

ent for each data set of the five EC tower distances. Against

this background, statements about how EC tower distances

affect the two-tower based uncertainty estimate need to be

treated with caution.

The NEE uncertainty σ(δ)corr,f estimated for the grassland

site Rollesbroich agrees well with the NEE uncertainty val-

ues for grassland sites by Richardson et al. (2006), and also

the regression coefficients (Figs. 2–3, 5–6, Table A1) do not

show large differences. This can be expected since Richard-

son et al. (2006) applied their method for a very well-suited

tower pair with low systematic differences, such that the clas-

sical approach and our extended approach should approxi-

mately converge. However, identical results are unlikely be-

cause even for two very similar neighboring sites some sys-

tematic differences occur. In addition, the random error is ex-

pected to vary between sites (see, e.g., Mauder et al., 2013)

which is in part related to instrumentation.

5 Conclusions

When estimating the uncertainty of eddy covariance net CO2
flux (NEE) measurements with a two-tower based approach
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it is important to consider that the basic assumptions of

identical environmental conditions (including weather con-

ditions and land surface properties) on the one hand and non-

overlapping footprints on the other hand are contradicting

and impossible to fulfill. If the two EC towers are located

at a distance large enough to ensure non-overlapping foot-

prints, different environmental conditions at both EC tow-

ers can cause systematic differences of the simultaneously

measured fluxes that should not be included in the uncer-

tainty estimate. This study for the grassland site Rollesbroich

in Germany showed that the extended two-tower approach

which includes a correction for systematic flux differences

(sfd-correction) can be used to derive more reliable (less

overestimated) uncertainty estimates compared to the classi-

cal two-tower approach. An advantage of this extended two-

tower approach is its simplicity and the fact that there is no

need to quantify the differences in environmental conditions

(which is usually not possible due to a lack of data). Compar-

ing the uncertainty estimates for five different EC tower dis-

tances showed that the mean uncertainty estimated with our

extended two-tower approach for the 95 and 173m distances

were nearly identical to the random error estimated with the

raw-data based reference method. This suggests that these

distances were most appropriate for the application of the

extended two-tower approach in this study. Accordingly, we

consider the regressions in Fig. 6b, c to be most reliable. Also

for the largest EC tower distances (20.5 km, 34 km) the sfd-

correction significantly improved the correlations of the flux

magnitude and the random error and significantly reduced

the difference to the independent, raw-data based reference

value. We therefore conclude that if no second EC tower is

available at a closer distance (but available further away), a

rough, probably overestimated NEE uncertainty estimate can

be acquired with the extended two-tower approach although

environmental conditions at the two sites are not identical.

A statement about the transferability of our experiment to

other sites and EC tower distances requires further experi-

ments. However, we assume transferability is given if both

EC towers are located at sites of the same vegetation type

(e.g., C3-grasses, C4-crops, deciduous forest, coniferous for-

est). Flux differences caused by a different phenology can be

very hard to separate from the random error estimate, even

though they are expected to be mainly systematic and could

therefore be partly captured with the sfd-correction. More-

over, the EC raw data should be processed in the same way

(as done here) and the measurement devices should be iden-

tical and installed at about the same measurement height. It is

also important that the instruments are calibrated thoroughly

and consistently. Because this was true for the three EC tow-

ers included in this study, we conclude that systematic flux

differences that are corrected for with the sfd-correction arise

mainly from different environmental conditions whereas cal-

ibration errors are assumed to have a very minor effect.

Different weather conditions at both EC tower sites are a

main drawback for applications of the two-tower approach.

While systematic differences of the weather conditions are

expected to be captured by the sfd-correction, less system-

atic weather fluctuations – e.g., related to cloud movement

– are difficult to be filtered of the two-tower based uncer-

tainty estimate. Applying very strict thresholds can lead to

a too-small data set, especially if the measurement periods

are short. If EC raw data are available, we recommend to use

an uncertainty estimation scheme like the one presented in

Mauder et al. (2013). Raw-data based NEE uncertainty es-

timation methods like the one suggested by Finkelstein and

Sims (2001) and implemented by Mauder et al. (2013) have

not been extensively applied yet and – to the best of our

knowledge – never been compared to the ones derived with

the more well-known two-tower approach. The fact that the

two uncertainty estimates (extended two-tower approach and

raw-data based reference) give very similar results therefore

contributes to the confidence in both methods.
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Appendix A

Table A1. Summary of the 95% confidence intervals for the lin-

ear regression coefficients of the NEE magnitudes – standard error

relationships determined with Eq. (1) for the four two-tower based

correction schemes and the five EC tower distances

Variables: Two towers: m mlower mupper b blower bupper

NEEnegative/σ(δ) EC1/EC2 (8m) −0.012 −0.041 0.017 0.691 0.442 0.940

EC1/EC2 (95m) −0.045 −0.099 0.010 1.163 0.680 1.647

EC1/EC2 (173m) −0.052 −0.067 −0.036 1.747 1.537 1.957

EC1/EC2 (20.5 km) −0.088 −0.272 0.097 2.544 0.696 4.392

EC1/EC3 (34 km) −0.130 −0.330 0.069 2.849 0.772 4.926

NEEnegative/σ(δ)f EC1/EC2 (8m) −0.008 −0.043 0.026 0.746 0.497 0.995

EC1/EC2 (95m) −0.005 −0.036 0.026 1.569 1.286 1.853

EC1/EC2 (173m) −0.055 −0.088 −0.021 1.416 1.009 1.824

EC1/EC2 (20.5 km) −0.011 −0.087 0.066 2.606 1.929 3.284

EC1/EC3 (34 km) −0.039 −0.190 0.113 3.527 1.737 5.317

NEEnegative/σ(δ)corr EC1/EC2 (8m) −0.036 −0.048 −0.024 0.227 0.125 0.329

EC1/EC2 (95m) −0.043 −0.072 −0.014 0.699 0.379 1.018

EC1/EC2 (173m) −0.052 −0.087 −0.017 0.485 −0.059 1.030

EC1/EC2 (20.5 km) −0.085 −0.142 −0.028 1.033 0.312 1.754

EC1/EC3 (34 km) −0.092 −0.129 −0.055 0.963 0.421 1.505

NEEnegative/σ(δ)corr,f EC1/EC2 (8m) −0.040 −0.060 −0.019 0.211 0.053 0.369

EC1/EC2 (95m) −0.044 −0.074 −0.013 0.574 0.252 0.895

EC1/EC2 (173m) −0.071 −0.122 −0.021 0.272 −0.440 0.983

EC1/EC2 (20.5 km) −0.106 −0.204 −0.009 0.493 −0.685 1.671

EC1/EC3 (34 km) −0.070 −0.108 −0.031 0.981 0.346 1.616

NEEpositive/σ(δ) EC1/EC2 (8m) 0.101 0.027 0.174 0.346 −0.024 0.715

EC1/EC2 (95m) 0.161 0.028 0.294 0.734 0.285 1.183

EC1/EC2 (173m) 0.061 −0.284 0.406 1.340 −0.775 3.455

EC1/EC2 (20.5 km) 0.118 −0.272 0.507 1.332 −0.500 3.164

EC1/EC3 (34 km) 0.235 0.113 0.356 0.731 0.323 1.140

NEEpositive/σ(δ)f EC1/EC2 (8m) 0.101 0.020 0.182 0.340 −0.080 0.760

EC1/EC2 (95m) 0.029 −0.299 0.357 1.333 −0.114 2.780

EC1/EC2 (173m) 0.179 −0.122 0.480 0.535 −1.316 2.385

EC1/EC2 (20.5 km) 0.145 −0.174 0.464 1.134 −0.365 2.632

EC1/EC3 (34 km) 0.320 0.059 0.580 0.763 −0.330 1.857

NEEpositive/σ(δ)corr EC1/EC2 (8m) 0.083 0.043 0.123 0.089 −0.106 0.284

EC1/EC2 (95m) 0.074 0.054 0.094 0.165 0.094 0.236

EC1/EC2 (173m) 0.172 −0.093 0.436 −0.110 −1.979 1.759

EC1/EC2 (20.5 km) 0.245 0.122 0.367 −0.328 −0.938 0.282

EC1/EC3 (34 km) 0.162 0.135 0.189 0.080 −0.015 0.175

NEEpositive/σ(δ)corr,f EC1/EC2 (8m) 0.078 0.037 0.118 0.101 −0.102 0.303

EC1/EC2 (95m) 0.090 0.030 0.150 0.136 −0.142 0.414

EC1/EC2 (173m) 0.163 −0.132 0.459 −0.040 −2.081 2.000

EC1/EC2 (20.5 km) 0.159 −0.094 0.413 0.072 −1.205 1.349

EC1/EC3 (34 km) 0.205 0.132 0.279 0.029 −0.278 0.337

mlower; mupper: lower and upper 95% confidence interval for slope m; blower; bupper: lower and upper 95% confidence interval for intersect b;

σ(δ), σ(δ)f: uncertainty estimated with classical two-tower approach without and with weather filter (f); σ(δ)corr, σ(δ)corr,f: uncertainty

estimated with extended two-tower approach.
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Table A2. R2 for NEE uncertainty determined with the extended

two-tower approach (including sfd-correction and weather filter) as

function of NEEcorr magnitude and for 20.5 km EC tower distance.

Results are given for different moving average time intervals (6 h,

12 h, 24 h) and data coverage percentages (25%, 50%, 70%) for

the calculation of the sfd-correction factor (Eq. 2).

6 h 12 h 24 h

30% 0.73, 0.84, (937) 0.92, 0.72 (904) 0.84, 0.82, (597)

50% 0.58, 0.85, (710) 0.7, 0.43, (463) –, –, (32)

70% 0.77, 0.78, (408) 0.66, 0.08, (148) –, –, (0)

Normal: for negative NEE; bold: for positive NEE; (): total number of half-hourly NEE

left after sfd-correction and weather filter to build bins for NEE uncertainty versus NEE

magnitude regressions (Fig. 5 for 12 h and 50%)

Table A3. Relative difference [%] of mean uncertainty σ(δ)corr,f
estimated with the extended two-tower approach and the reference

σcov for EC tower distances > 8m.

Diff 1 σcov (6 h) 1 σcov (12 h) 1 σcov (24 h)

30% −0.8, 39.3 4.8, 55.5 10.9, 59.9

50% −9.3, 32.5 −1.5, 41.2 –

70% −10.5, 24.3 −5.2, 10.2 –

Normal: mean 1σcov for 95 and 173m distance; bold: mean 1σcov for

20.5 and 34 km distance.
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