000203176 001__ 203176
000203176 005__ 20210129220314.0
000203176 0247_ $$2doi$$a10.5194/gmd-8-923-2015
000203176 0247_ $$2ISSN$$a1991-959X
000203176 0247_ $$2ISSN$$a1991-9603
000203176 0247_ $$2Handle$$a2128/9027
000203176 0247_ $$2WOS$$aWOS:000352160200026
000203176 037__ $$aFZJ-2015-05181
000203176 082__ $$a910
000203176 1001_ $$0P:(DE-HGF)0$$aMaxwell, R. M.$$b0$$eCorresponding author
000203176 245__ $$aA high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3
000203176 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2015
000203176 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439192939_17755
000203176 3367_ $$2DataCite$$aOutput Types/Journal article
000203176 3367_ $$00$$2EndNote$$aJournal Article
000203176 3367_ $$2BibTeX$$aARTICLE
000203176 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203176 3367_ $$2DRIVER$$aarticle
000203176 520__ $$aInteractions between surface and groundwater systems are well-established theoretically and observationally. While numerical models that solve both surface and subsurface flow equations in a single framework (matrix) are increasingly being applied, computational limitations have restricted their use to local and regional studies. Regional or watershed-scale simulations have been effective tools for understanding hydrologic processes; however, there are still many questions, such as the adaptation of water resources to anthropogenic stressors and climate variability, that can only be answered across large spatial extents at high resolution. In response to this grand challenge in hydrology, we present the results of a parallel, integrated hydrologic model simulating surface and subsurface flow at high spatial resolution (1 km) over much of continental North America (~ 6.3 M km2). These simulations provide integrated predictions of hydrologic states and fluxes, namely, water table depth and streamflow, at very large scale and high resolution. The physics-based modeling approach used here requires limited parameterizations and relies only on more fundamental inputs such as topography, hydrogeologic properties and climate forcing. Results are compared to observations and provide mechanistic insight into hydrologic process interaction. This study demonstrates both the feasibility of continental-scale integrated models and their utility for improving our understanding of large-scale hydrologic systems; the combination of high resolution and large spatial extent facilitates analysis of scaling relationships using model outputs.
000203176 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000203176 588__ $$aDataset connected to CrossRef
000203176 7001_ $$0P:(DE-HGF)0$$aCondon, L. E.$$b1
000203176 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b2$$ufzj
000203176 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-8-923-2015$$gVol. 8, no. 3, p. 923 - 937$$n3$$p923 - 937$$tGeoscientific model development$$v8$$x1991-9603$$y2015
000203176 8564_ $$uhttps://juser.fz-juelich.de/record/203176/files/gmd-8-923-2015.pdf$$yOpenAccess
000203176 8564_ $$uhttps://juser.fz-juelich.de/record/203176/files/gmd-8-923-2015.gif?subformat=icon$$xicon$$yOpenAccess
000203176 8564_ $$uhttps://juser.fz-juelich.de/record/203176/files/gmd-8-923-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000203176 8564_ $$uhttps://juser.fz-juelich.de/record/203176/files/gmd-8-923-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000203176 8564_ $$uhttps://juser.fz-juelich.de/record/203176/files/gmd-8-923-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000203176 8564_ $$uhttps://juser.fz-juelich.de/record/203176/files/gmd-8-923-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000203176 909CO $$ooai:juser.fz-juelich.de:203176$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000203176 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000203176 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2013
000203176 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203176 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203176 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203176 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203176 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGEOSCI MODEL DEV : 2013
000203176 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000203176 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000203176 9141_ $$y2015
000203176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203176 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000203176 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000203176 980__ $$ajournal
000203176 980__ $$aVDB
000203176 980__ $$aUNRESTRICTED
000203176 980__ $$aI:(DE-Juel1)IBG-3-20101118
000203176 980__ $$aFullTexts
000203176 9801_ $$aFullTexts