001     20318
005     20240712101020.0
024 7 _ |a 10.5194/acp-12-2037-2012
|2 DOI
024 7 _ |a WOS:000300875900023
|2 WOS
024 7 _ |a 2128/7436
|2 Handle
024 7 _ |a altmetric:2433107
|2 altmetric
037 _ _ |a PreJuSER-20318
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |a Wild, O.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Modelling future changes in surface ozone: a parameterized approach
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2012
300 _ _ |a 2037 - 2054
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Atmospheric Chemistry and Physics
|x 1680-7316
|0 9601
|y 4
|v 12
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4-6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models.
536 _ _ |a Atmosphäre und Klima
|c P23
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK491
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Fiore, A.M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Shindell, D.T.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Doherty, R.M.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Collins, W.J.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Dentener, F.J.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Schultz, M.G.
|b 6
|u FZJ
|0 P:(DE-Juel1)6952
700 1 _ |a Gong, S.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a MacKenzie, I.A.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Zeng, G.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Hess, P.
|b 10
|0 P:(DE-HGF)0
700 1 _ |a Duncan, B.N.
|b 11
|0 P:(DE-HGF)0
700 1 _ |a Bergmann, D.J.
|b 12
|0 P:(DE-HGF)0
700 1 _ |a Szopa, S.
|b 13
|0 P:(DE-HGF)0
700 1 _ |a Jonson, J.E.
|b 14
|0 P:(DE-HGF)0
700 1 _ |a Keating, T.J.
|b 15
|0 P:(DE-HGF)0
700 1 _ |a Zuber, A.
|b 16
|0 P:(DE-HGF)0
773 _ _ |a 10.5194/acp-12-2037-2012
|g Vol. 12, p. 2037 - 2054
|p 2037 - 2054
|q 12<2037 - 2054
|0 PERI:(DE-600)2069847-1
|t Atmospheric chemistry and physics
|v 12
|y 2012
|x 1680-7316
856 7 _ |u http://dx.doi.org/10.5194/acp-12-2037-2012
856 4 _ |u https://juser.fz-juelich.de/record/20318/files/FZJ-20318.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/20318/files/FZJ-20318.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20318/files/FZJ-20318.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20318/files/FZJ-20318.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:20318
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
913 1 _ |b Erde und Umwelt
|k P23
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF2-230
|0 G:(DE-Juel1)FUEK491
|2 G:(DE-HGF)POF2-200
|v Atmosphäre und Klima
|x 0
|z vormals P22
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-249H
|2 G:(DE-HGF)POF3-200
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 1 _ |k IEK-8
|l Troposphäre
|g IEK
|0 I:(DE-Juel1)IEK-8-20101013
|x 0
970 _ _ |a VDB:(DE-Juel1)135697
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21