001     203188
005     20240712100831.0
024 7 _ |2 doi
|a 10.1002/2015GL064443
024 7 _ |2 ISSN
|a 0094-8276
024 7 _ |2 ISSN
|a 1944-8007
024 7 _ |2 Handle
|a 2128/9626
024 7 _ |2 WOS
|a WOS:000357511200043
024 7 _ |a altmetric:3991566
|2 altmetric
037 _ _ |a FZJ-2015-05189
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)156119
|a Tao, Mengchu
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Impact of stratospheric major warmings and the quasi-biennial oscillation on the variability of stratospheric water vapompo
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1450769835_21620
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Based on simulations with the Chemical Lagrangian Model of the Stratosphere for the 1979–2013 period, driven by the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis, we analyze the impact of the quasi-biennial oscillation (QBO) and of Major Stratospheric Warmings (MWs) on the amount of water vapor entering the stratosphere during boreal winter. The amplitude of H2O variation related to the QBO amounts to 0.5 ppmv. The additional effect of MWs reaches its maximum about 2–4 weeks after the central date of the MW and strongly depends on the QBO phase. Whereas during the easterly QBO phase there is a pronounced drying of about 0.3 ppmv about 3 weeks after the MW, the impact of the MW during the westerly QBO phase is smaller (about 0.2 ppmv) and more diffusely spread over time. We suggest that the MW-associated enhanced dehydration combined with a higher frequency of MWs after the year 2000 may have contributed to the lower stratospheric water vapor after 2000.
536 _ _ |0 G:(DE-HGF)POF3-244
|a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|c POF3-244
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129130
|a Konopka, Paul
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)129141
|a Ploeger, Felix
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)129145
|a Riese, Martin
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)129138
|a Müller, Rolf
|b 4
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Volk, C. Michael
|b 5
773 _ _ |0 PERI:(DE-600)2021599-X
|a 10.1002/2015GL064443
|g Vol. 42, no. 11, p. 4599 - 4607
|n 11
|p 4599 - 4607
|t Geophysical research letters
|v 42
|x 0094-8276
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/203188/files/Tao_et_al-2015-Geophysical_Research_Letters.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203188/files/Tao_et_al-2015-Geophysical_Research_Letters.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203188/files/Tao_et_al-2015-Geophysical_Research_Letters.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203188/files/Tao_et_al-2015-Geophysical_Research_Letters.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203188/files/Tao_et_al-2015-Geophysical_Research_Letters.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203188/files/Tao_et_al-2015-Geophysical_Research_Letters.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:203188
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156119
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129130
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129141
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129145
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129138
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-244
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b GEOPHYS RES LETT : 2013
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21