000203191 001__ 203191
000203191 005__ 20240712100831.0
000203191 0247_ $$2doi$$a10.5194/acp-15-2019-2015
000203191 0247_ $$2ISSN$$a1680-7316
000203191 0247_ $$2ISSN$$a1680-7324
000203191 0247_ $$2Handle$$a2128/9624
000203191 0247_ $$2WOS$$aWOS:000351197000003
000203191 0247_ $$2altmetric$$aaltmetric:21827211
000203191 037__ $$aFZJ-2015-05192
000203191 041__ $$aEnglish
000203191 082__ $$a550
000203191 1001_ $$0P:(DE-HGF)0$$aKirner, O.$$b0$$eCorresponding author
000203191 245__ $$aContribution of liquid, NAT and ice particles to chlorine activation and ozone depletion in Antarctic winter and spring
000203191 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000203191 3367_ $$2DRIVER$$aarticle
000203191 3367_ $$2DataCite$$aOutput Types/Journal article
000203191 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1466433079_15455
000203191 3367_ $$2BibTeX$$aARTICLE
000203191 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203191 3367_ $$00$$2EndNote$$aJournal Article
000203191 520__ $$aHeterogeneous reactions in the Antarctic stratosphere are the cause of chlorine activation and ozone depletion, but the relative roles of different types of polar stratospheric clouds (PSCs) in chlorine activation is an open question. We use multi-year simulations of the chemistry-climate model ECHAM5/MESSy for Atmospheric Chemistry (EMAC) to investigate the impact that the various types of PSCs have on Antarctic chlorine activation and ozone loss.One standard and three sensitivity EMAC simulations have been performed. In all simulations a Newtonian relaxation technique using the ERA-Interim reanalysis was applied to simulate realistic synoptic conditions. In the three sensitivity simulations, we only changed the heterogeneous chemistry on PSC particles by switching the chemistry on liquid, nitric acid trihydrate (NAT) and ice particles on and off. The results of these simulations show that the significance of heterogeneous reactions on NAT and ice particles for chlorine activation and ozone depletion in Antarctic winter and spring is small in comparison to the significance of heterogeneous reactions on liquid particles. Liquid particles alone are sufficient to activate almost all of the available chlorine, with the exception of the upper PSC regions between 10 and 30 hPa, where temporarily ice particles show a relevant contribution. Shortly after the first PSC occurrence, NAT particles contribute a small fraction to chlorine activation.Heterogeneous chemistry on liquid particles is responsible for more than 90% of the ozone depletion in Antarctic spring in the model simulations. In high southern latitudes, heterogeneous chemistry on ice particles causes only up to 5 DU of additional ozone depletion in the column and heterogeneous chemistry on NAT particles less than 0.5 DU.The simulated HNO3, ClO and O3 results agree closely with observations from the Microwave Limb Sounder (MLS) onboard NASA's Aura satellite.
000203191 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000203191 588__ $$aDataset connected to CrossRef
000203191 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b1
000203191 7001_ $$0P:(DE-HGF)0$$aRuhnke, R.$$b2
000203191 7001_ $$0P:(DE-HGF)0$$aFischer, H.$$b3
000203191 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-15-2019-2015$$gVol. 15, no. 4, p. 2019 - 2030$$n4$$p2019 - 2030$$tAtmospheric chemistry and physics$$v15$$x1680-7324$$y2015
000203191 8564_ $$uhttps://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.pdf$$yOpenAccess
000203191 8564_ $$uhttps://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.gif?subformat=icon$$xicon$$yOpenAccess
000203191 8564_ $$uhttps://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000203191 8564_ $$uhttps://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000203191 8564_ $$uhttps://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000203191 8564_ $$uhttps://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000203191 909CO $$ooai:juser.fz-juelich.de:203191$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000203191 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203191 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000203191 9141_ $$y2015
000203191 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203191 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000203191 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203191 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2013
000203191 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000203191 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203191 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203191 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203191 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000203191 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2013
000203191 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203191 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203191 920__ $$lyes
000203191 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000203191 9801_ $$aUNRESTRICTED
000203191 9801_ $$aFullTexts
000203191 980__ $$ajournal
000203191 980__ $$aVDB
000203191 980__ $$aI:(DE-Juel1)IEK-7-20101013
000203191 980__ $$aUNRESTRICTED
000203191 981__ $$aI:(DE-Juel1)ICE-4-20101013