001     203191
005     20240712100831.0
024 7 _ |a 10.5194/acp-15-2019-2015
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/9624
|2 Handle
024 7 _ |a WOS:000351197000003
|2 WOS
024 7 _ |a altmetric:21827211
|2 altmetric
037 _ _ |a FZJ-2015-05192
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Kirner, O.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Contribution of liquid, NAT and ice particles to chlorine activation and ozone depletion in Antarctic winter and spring
260 _ _ |a Katlenburg-Lindau
|c 2015
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1466433079_15455
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Heterogeneous reactions in the Antarctic stratosphere are the cause of chlorine activation and ozone depletion, but the relative roles of different types of polar stratospheric clouds (PSCs) in chlorine activation is an open question. We use multi-year simulations of the chemistry-climate model ECHAM5/MESSy for Atmospheric Chemistry (EMAC) to investigate the impact that the various types of PSCs have on Antarctic chlorine activation and ozone loss.One standard and three sensitivity EMAC simulations have been performed. In all simulations a Newtonian relaxation technique using the ERA-Interim reanalysis was applied to simulate realistic synoptic conditions. In the three sensitivity simulations, we only changed the heterogeneous chemistry on PSC particles by switching the chemistry on liquid, nitric acid trihydrate (NAT) and ice particles on and off. The results of these simulations show that the significance of heterogeneous reactions on NAT and ice particles for chlorine activation and ozone depletion in Antarctic winter and spring is small in comparison to the significance of heterogeneous reactions on liquid particles. Liquid particles alone are sufficient to activate almost all of the available chlorine, with the exception of the upper PSC regions between 10 and 30 hPa, where temporarily ice particles show a relevant contribution. Shortly after the first PSC occurrence, NAT particles contribute a small fraction to chlorine activation.Heterogeneous chemistry on liquid particles is responsible for more than 90% of the ozone depletion in Antarctic spring in the model simulations. In high southern latitudes, heterogeneous chemistry on ice particles causes only up to 5 DU of additional ozone depletion in the column and heterogeneous chemistry on NAT particles less than 0.5 DU.The simulated HNO3, ClO and O3 results agree closely with observations from the Microwave Limb Sounder (MLS) onboard NASA's Aura satellite.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 1
700 1 _ |a Ruhnke, R.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fischer, H.
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.5194/acp-15-2019-2015
|g Vol. 15, no. 4, p. 2019 - 2030
|0 PERI:(DE-600)2069847-1
|n 4
|p 2019 - 2030
|t Atmospheric chemistry and physics
|v 15
|y 2015
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203191/files/acp-15-2019-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:203191
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129138
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21