000203194 001__ 203194
000203194 005__ 20210129220318.0
000203194 0247_ $$2doi$$a10.1016/j.jmb.2015.01.020
000203194 0247_ $$2ISSN$$a0022-2836
000203194 0247_ $$2ISSN$$a1089-8638
000203194 0247_ $$2WOS$$aWOS:000351798700016
000203194 0247_ $$2altmetric$$aaltmetric:3716685
000203194 0247_ $$2pmid$$apmid:25659910
000203194 037__ $$aFZJ-2015-05195
000203194 041__ $$aEnglish
000203194 082__ $$a570
000203194 1001_ $$0P:(DE-HGF)0$$aWördehoff, Michael M.$$b0
000203194 245__ $$aSingle Fibril Growth Kinetics of α-Synuclein
000203194 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000203194 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439275031_4232
000203194 3367_ $$2DataCite$$aOutput Types/Journal article
000203194 3367_ $$00$$2EndNote$$aJournal Article
000203194 3367_ $$2BibTeX$$aARTICLE
000203194 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203194 3367_ $$2DRIVER$$aarticle
000203194 520__ $$aNeurodegenerative disorders associated with protein misfolding are fatal diseases that are caused by fibrillation of endogenous proteins such as α-synuclein (α-syn) in Parkinson's disease (PD) or amyloid-β in Alzheimer's disease. Fibrils of α-syn are a major pathological hallmark of PD and certain aggregation intermediates are postulated to cause synaptic failure and cell death of dopaminergic neurons in the substantia nigra. For the development of therapeutic approaches, the mechanistic understanding of the fibrillation process is essential. Here we report real-time observation of α-syn fibril elongation on a glass surface, imaged by total internal reflection fluorescence microscopy using thioflavin T fluorescence. Fibrillation on the glass surface occurred in the same time frame and yielded fibrils of similar length as fibrillation in solution. Time-resolved imaging of fibrillation on a single fibril level indicated that α-syn fibril elongation follows a stop-and-go mechanism; that is, fibrils either extend at a homogenous growth rate or stop to grow for variable time intervals. The fibril growth kinetics were compatible with a model featuring two states, a growth state and a stop state, which were approximately isoenergetic and interconverted with rate constants of ~ 1.5 × 10− 4 s− 1. In the growth state, α-syn monomers were incorporated into the fibril with a rate constant of 8.6 × 103 M− 1 s− 1. Fibril elongation of α-syn is slow compared to other amyloidogenic proteins.
000203194 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000203194 588__ $$aDataset connected to CrossRef
000203194 7001_ $$0P:(DE-Juel1)157832$$aBannach, Oliver$$b1$$eCorresponding author$$ufzj
000203194 7001_ $$0P:(DE-Juel1)167315$$aShaykhalishahi, Hamed$$b2$$ufzj
000203194 7001_ $$0P:(DE-Juel1)162310$$aKulawik, Andreas$$b3$$ufzj
000203194 7001_ $$0P:(DE-HGF)0$$aSchiefer, Stephanie$$b4
000203194 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b5$$ufzj
000203194 7001_ $$00000-0003-4301-5416$$aHoyer, Wolfgang$$b6
000203194 7001_ $$0P:(DE-Juel1)131992$$aBirkmann, Eva$$b7
000203194 773__ $$0PERI:(DE-600)1355192-9$$a10.1016/j.jmb.2015.01.020$$gVol. 427, no. 6, p. 1428 - 1435$$n6 B$$p1428 - 1435$$tJournal of molecular biology$$v427$$x0022-2836$$y2015
000203194 8564_ $$uhttp://www.sciencedirect.com/science/article/pii/S0022283615000765#
000203194 8564_ $$uhttps://juser.fz-juelich.de/record/203194/files/W%C3%B6rdehoff%2C%20Bannach%2C%20Shaykhalishahi%2C%20Kulawik%2C%20Schiefer%2C%20Willbold%2C%20Hoyer%2C%20Birkmann_2015.pdf$$yRestricted
000203194 8564_ $$uhttps://juser.fz-juelich.de/record/203194/files/W%C3%B6rdehoff%2C%20Bannach%2C%20Shaykhalishahi%2C%20Kulawik%2C%20Schiefer%2C%20Willbold%2C%20Hoyer%2C%20Birkmann_2015.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203194 909CO $$ooai:juser.fz-juelich.de:203194$$pVDB
000203194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157832$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167315$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162310$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000203194 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000203194 9141_ $$y2015
000203194 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203194 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000203194 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL BIOL : 2013
000203194 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203194 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203194 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203194 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203194 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203194 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000203194 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000203194 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203194 920__ $$lyes
000203194 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000203194 980__ $$ajournal
000203194 980__ $$aVDB
000203194 980__ $$aI:(DE-Juel1)ICS-6-20110106
000203194 980__ $$aUNRESTRICTED
000203194 981__ $$aI:(DE-Juel1)IBI-7-20200312