001     203194
005     20210129220318.0
024 7 _ |a 10.1016/j.jmb.2015.01.020
|2 doi
024 7 _ |a 0022-2836
|2 ISSN
024 7 _ |a 1089-8638
|2 ISSN
024 7 _ |a WOS:000351798700016
|2 WOS
024 7 _ |a altmetric:3716685
|2 altmetric
024 7 _ |a pmid:25659910
|2 pmid
037 _ _ |a FZJ-2015-05195
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Wördehoff, Michael M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Single Fibril Growth Kinetics of α-Synuclein
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1439275031_4232
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Neurodegenerative disorders associated with protein misfolding are fatal diseases that are caused by fibrillation of endogenous proteins such as α-synuclein (α-syn) in Parkinson's disease (PD) or amyloid-β in Alzheimer's disease. Fibrils of α-syn are a major pathological hallmark of PD and certain aggregation intermediates are postulated to cause synaptic failure and cell death of dopaminergic neurons in the substantia nigra. For the development of therapeutic approaches, the mechanistic understanding of the fibrillation process is essential. Here we report real-time observation of α-syn fibril elongation on a glass surface, imaged by total internal reflection fluorescence microscopy using thioflavin T fluorescence. Fibrillation on the glass surface occurred in the same time frame and yielded fibrils of similar length as fibrillation in solution. Time-resolved imaging of fibrillation on a single fibril level indicated that α-syn fibril elongation follows a stop-and-go mechanism; that is, fibrils either extend at a homogenous growth rate or stop to grow for variable time intervals. The fibril growth kinetics were compatible with a model featuring two states, a growth state and a stop state, which were approximately isoenergetic and interconverted with rate constants of ~ 1.5 × 10− 4 s− 1. In the growth state, α-syn monomers were incorporated into the fibril with a rate constant of 8.6 × 103 M− 1 s− 1. Fibril elongation of α-syn is slow compared to other amyloidogenic proteins.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bannach, Oliver
|0 P:(DE-Juel1)157832
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Shaykhalishahi, Hamed
|0 P:(DE-Juel1)167315
|b 2
|u fzj
700 1 _ |a Kulawik, Andreas
|0 P:(DE-Juel1)162310
|b 3
|u fzj
700 1 _ |a Schiefer, Stephanie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 5
|u fzj
700 1 _ |a Hoyer, Wolfgang
|0 0000-0003-4301-5416
|b 6
700 1 _ |a Birkmann, Eva
|0 P:(DE-Juel1)131992
|b 7
773 _ _ |a 10.1016/j.jmb.2015.01.020
|g Vol. 427, no. 6, p. 1428 - 1435
|0 PERI:(DE-600)1355192-9
|n 6 B
|p 1428 - 1435
|t Journal of molecular biology
|v 427
|y 2015
|x 0022-2836
856 4 _ |u http://www.sciencedirect.com/science/article/pii/S0022283615000765#
856 4 _ |u https://juser.fz-juelich.de/record/203194/files/W%C3%B6rdehoff%2C%20Bannach%2C%20Shaykhalishahi%2C%20Kulawik%2C%20Schiefer%2C%20Willbold%2C%20Hoyer%2C%20Birkmann_2015.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203194/files/W%C3%B6rdehoff%2C%20Bannach%2C%20Shaykhalishahi%2C%20Kulawik%2C%20Schiefer%2C%20Willbold%2C%20Hoyer%2C%20Birkmann_2015.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203194
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157832
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167315
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162310
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MOL BIOL : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21