001     203200
005     20210129220318.0
024 7 _ |a 10.1039/C5NR03643G
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a WOS:000360117200020
|2 WOS
037 _ _ |a FZJ-2015-05198
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Andrä, Michael
|0 P:(DE-Juel1)161427
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The influence of the local oxygen vacancy concentration on the piezoresponse of strontium titanate thin films
260 _ _ |a Cambridge
|c 2015
|b RSC Publ.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1440772000_28025
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a n this study, the influence of the local oxygen vacancy concentration on piezoresponse force microscopy (PFM) measurements was investigated. Ultra-thin single-crystalline SrTiO3 thin films were deposited on niobium doped SrTiO3 substrates and analyzed using a combined PFM and local conductive atomic force microscopy (LC-AFM) measurement setup. After applying different polarization voltages between ±2 V and ±5 V to the thin films, we simultaneously observed an anomalous contrast in the piezoresponse amplitude and phase signal as well as a changed local conductivity in the exact same region. Since classic ferroelectricity can be excluded as the reason for the observed contrast, an influence of the local oxygen vacancy concentration on the piezoresponse is considered. Additionally, the surface potential was measured using Kelvin probe force microscopy (KPFM) revealing a change in surface potential in the regions of the applied voltage. The observed relaxation of the surface potential over time was fitted to a local oxidation reaction of the previously reduced regions of the ultra-thin SrTiO3 film. We propose a model that relates the local oxygen vacancy concentration to the surface potential. The influence of the oxygen vacancy concentration on the PFM measurements is explained.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 1
|u fzj
700 1 _ |a Bäumer, Christoph
|0 P:(DE-Juel1)159254
|b 2
|u fzj
700 1 _ |a Xu, Chencheng
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 4
|u fzj
700 1 _ |a Waser, Rainer
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1039/C5NR03643G
|g p. 10.1039.C5NR03643G
|0 PERI:(DE-600)2515664-0
|n 34
|p 14351-14357
|t Nanoscale
|v 7
|y 2015
|x 2040-3372
856 4 _ |u https://juser.fz-juelich.de/record/203200/files/c5nr03643g.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203200/files/c5nr03643g.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203200/files/c5nr03643g.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203200/files/c5nr03643g.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203200/files/c5nr03643g.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203200/files/c5nr03643g.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203200
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161427
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159254
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2013
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21