000203203 001__ 203203
000203203 005__ 20210129220319.0
000203203 0247_ $$2doi$$a10.1016/j.rse.2015.07.022
000203203 0247_ $$2ISSN$$a0034-4257
000203203 0247_ $$2ISSN$$a1879-0704
000203203 0247_ $$2WOS$$aWOS:000361405500032
000203203 037__ $$aFZJ-2015-05201
000203203 041__ $$aEnglish
000203203 082__ $$a050
000203203 1001_ $$0P:(DE-HGF)0$$aAč, Alexander$$b0
000203203 245__ $$aMeta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stressplant
000203203 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000203203 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439278914_4955
000203203 3367_ $$2DataCite$$aOutput Types/Journal article
000203203 3367_ $$00$$2EndNote$$aJournal Article
000203203 3367_ $$2BibTeX$$aARTICLE
000203203 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203203 3367_ $$2DRIVER$$aarticle
000203203 520__ $$aMany laboratory studies investigating chlorophyll fluorescence (F) of plants have provided sufficient evidence of the functional link between dynamic changes in photosynthetic activity and F emissions. Far fewer studies, however, have been devoted to detailed analysis of F emission under steady-state conditions, which may be amenable to measurement by passive spectroradiometers onboard airborne or satellite missions. Here, we provide a random-effects meta-analysis of studies using both passively (sun-induced) and actively (e.g. laser-induced) measured steady-state F for detecting stress reactions in terrestrial vegetation. Specifically, we review behaviour of F in red and far-red wavelengths, and also the red to far-red F ratio, for plants physiologically stressed by water deficit, temperature extremes, and nitrogen insufficiency. Results suggest that water stress is, in general, associated with a decline in red and far-red F signal intensity measured at both leaf and canopy levels, whereas the red to far-red F ratio displays an inconsistent behaviour. Chilling, for which only studies with active measurements at the leaf level are available, significantly increased red and far-red F, whereas heat stress produced a less convincing decrease in both F emissions, notably in canopies measured passively. The clearest indicator of temperature stress was the F ratio, which declined significantly and consistently. The F ratio was also the strongest indicator of nitrogen deficiency, revealing a nearly uniformly increasing pattern driven by predominantly declining far-red F. Although significant knowledge gaps were encountered for certain scales and F measurement techniques, the analyses indicate that future airborne or space-borne acquisitions of both red and far-red F signals would be beneficial for timely detection of plant stress events.
000203203 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000203203 588__ $$aDataset connected to CrossRef
000203203 7001_ $$00000-0002-1271-8103$$aMalenovský, Zbyněk$$b1$$eCorresponding author
000203203 7001_ $$0P:(DE-HGF)0$$aOlejníčková, Julie$$b2
000203203 7001_ $$0P:(DE-HGF)0$$aGallé, Alexander$$b3
000203203 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b4
000203203 7001_ $$0P:(DE-HGF)0$$aMohammed, Gina$$b5
000203203 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2015.07.022$$gVol. 168, p. 420 - 436$$p420 - 436$$tRemote sensing of environment$$v168$$x0034-4257$$y2015
000203203 8564_ $$uhttps://juser.fz-juelich.de/record/203203/files/1-s2.0-S0034425715300808-main.pdf$$yRestricted
000203203 8564_ $$uhttps://juser.fz-juelich.de/record/203203/files/1-s2.0-S0034425715300808-main.gif?subformat=icon$$xicon$$yRestricted
000203203 8564_ $$uhttps://juser.fz-juelich.de/record/203203/files/1-s2.0-S0034425715300808-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203203 8564_ $$uhttps://juser.fz-juelich.de/record/203203/files/1-s2.0-S0034425715300808-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203203 8564_ $$uhttps://juser.fz-juelich.de/record/203203/files/1-s2.0-S0034425715300808-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203203 8564_ $$uhttps://juser.fz-juelich.de/record/203203/files/1-s2.0-S0034425715300808-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203203 909CO $$ooai:juser.fz-juelich.de:203203$$pVDB
000203203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203203 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000203203 9141_ $$y2015
000203203 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2013
000203203 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203203 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203203 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203203 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203203 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203203 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203203 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203203 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000203203 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203203 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000203203 980__ $$ajournal
000203203 980__ $$aVDB
000203203 980__ $$aI:(DE-Juel1)IBG-2-20101118
000203203 980__ $$aUNRESTRICTED