000203223 001__ 203223
000203223 005__ 20210129220322.0
000203223 0247_ $$2doi$$a10.1111/nph.13571
000203223 0247_ $$2ISSN$$a0028-646X
000203223 0247_ $$2ISSN$$a1469-8137
000203223 0247_ $$2Handle$$a2128/9344
000203223 0247_ $$2WOS$$aWOS:000365392100013
000203223 0247_ $$2altmetric$$aaltmetric:4308263
000203223 0247_ $$2pmid$$apmid:26197869
000203223 037__ $$aFZJ-2015-05212
000203223 041__ $$aEnglish
000203223 082__ $$a580
000203223 1001_ $$0P:(DE-Juel1)129384$$aPoorter, Hendrik$$b0$$eCorresponding author$$ufzj
000203223 245__ $$aHow does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents
000203223 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2015
000203223 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1444726641_31780
000203223 3367_ $$2DataCite$$aOutput Types/Journal article
000203223 3367_ $$00$$2EndNote$$aJournal Article
000203223 3367_ $$2BibTeX$$aARTICLE
000203223 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203223 3367_ $$2DRIVER$$aarticle
000203223 520__ $$aWe compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio.
000203223 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000203223 588__ $$aDataset connected to CrossRef
000203223 7001_ $$0P:(DE-HGF)0$$aJagodzinski, Andrzej M.$$b1
000203223 7001_ $$0P:(DE-HGF)0$$aRuiz-Peinado, Ricardo$$b2
000203223 7001_ $$0P:(DE-HGF)0$$aKuyah, Shem$$b3
000203223 7001_ $$0P:(DE-HGF)0$$aLuo, Yunjian$$b4$$eCorresponding author
000203223 7001_ $$0P:(DE-HGF)0$$aOleksyn, Jacek$$b5
000203223 7001_ $$0P:(DE-HGF)0$$aUsoltsev, Vladimir A.$$b6
000203223 7001_ $$0P:(DE-HGF)0$$aBuckley, Thomas N.$$b7
000203223 7001_ $$0P:(DE-HGF)0$$aReich, Peter B.$$b8
000203223 7001_ $$0P:(DE-HGF)0$$aSack, Lawren$$b9
000203223 773__ $$0PERI:(DE-600)1472194-6$$a10.1111/nph.13571$$gp. n/a - n/a$$n3$$p736–749$$tThe @new phytologist$$v208$$x0028-646X$$y2015
000203223 8564_ $$uhttps://juser.fz-juelich.de/record/203223/files/Poorter_et_al-2015-New_Phytologist.pdf$$yOpenAccess
000203223 8564_ $$uhttps://juser.fz-juelich.de/record/203223/files/Poorter_et_al-2015-New_Phytologist.gif?subformat=icon$$xicon$$yOpenAccess
000203223 8564_ $$uhttps://juser.fz-juelich.de/record/203223/files/Poorter_et_al-2015-New_Phytologist.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000203223 8564_ $$uhttps://juser.fz-juelich.de/record/203223/files/Poorter_et_al-2015-New_Phytologist.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000203223 8564_ $$uhttps://juser.fz-juelich.de/record/203223/files/Poorter_et_al-2015-New_Phytologist.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000203223 8564_ $$uhttps://juser.fz-juelich.de/record/203223/files/Poorter_et_al-2015-New_Phytologist.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000203223 909CO $$ooai:juser.fz-juelich.de:203223$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000203223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129384$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203223 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000203223 9141_ $$y2015
000203223 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW PHYTOL : 2013
000203223 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203223 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203223 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000203223 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203223 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203223 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203223 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203223 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000203223 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000203223 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEW PHYTOL : 2013
000203223 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000203223 920__ $$lyes
000203223 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000203223 980__ $$ajournal
000203223 980__ $$aVDB
000203223 980__ $$aUNRESTRICTED
000203223 980__ $$aI:(DE-Juel1)IBG-2-20101118
000203223 9801_ $$aUNRESTRICTED
000203223 9801_ $$aFullTexts