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In collinear magnets lacking inversion symmetry, application of electric currents induces torques on the
magnetization and conversely magnetization dynamics induces electric currents. The two effects, which both
rely on spin-orbit interaction, are reciprocal to each other and denoted direct spin-orbit torque (SOT) and
inverse spin-orbit torque (ISOT), respectively. We derive expressions for SOT and ISOT within the Kubo
linear-response formalism. We show that expressions suitable for density-functional theory calculations can be
derived either starting from a Kohn-Sham Hamiltonian with time-dependent exchange field or by expressing
general susceptibilities in terms of the Kohn-Sham susceptibilities. For the case of magnetic bilayer systems we
derive the general form of the ISOT current induced under ferromagnetic resonance. Using ab initio calculations
within density-functional theory, we investigate SOT and ISOT in Co/Pt(111) magnetic bilayers. We determine
the spatial distribution of spin and charge currents as well as torques in order to expose the mechanisms underlying
SOT and ISOT and to highlight their reciprocity on the microscopic level. We find that the spin Hall effect is
position dependent close to interfaces.
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I. INTRODUCTION

In ferromagnetic materials, Faraday’s law of induction
needs to be generalized to include so-called spin-motive forces,
i.e., electric fields induced by the magnetization dynamics
[1–3]. The spin-motive force can be interpreted as the
reciprocal of the current-induced torque: A moving domain
wall induces a spin-motive force and conversely an applied
current drives domain-wall motion. Thus, the electric fields
induced by magnetization dynamics generate a feedback effect
on the magnetization via the current-induced torques which
they produce [4].

Spin-motive forces do not only occur in noncollinear mag-
netic structures such as domain walls [5] and skyrmions [6],
but can arise also in collinear magnets due to the inter-
play of spin orbit interaction (SOI) with bulk or struc-
tural inversion asymmetry [7,8]. Spin-orbit torques (SOTs)
[9–17], i.e., current-induced torques originating from SOI in
inversion-asymmetric collinear magnets, are the reciprocal
to the electric fields induced by magnetization dynamics in
collinear magnets [18,19]. Thus, we will denote the latter as
inverse spin-orbit torques (ISOTs) in the following. ISOTs
constitute a special case of spin-motive forces.

While earlier experiments on SOTs estimated the current-
induced torques indirectly from the onset of nucleation of
reversed domains [20] or magnetization switching at critical
current densities [21–23] direct measurements of SOTs have
been performed recently in bilayer systems and the SOT has
been determined as a function of magnetization direction
M̂ [24–26]. Two qualitatively different SOT components
are found in these experiments on bilayer systems: the first
one is an even function of M̂, the second one is an odd
function. Denoting the applied in-plane electric field by E
and the unit vector in the out-of-plane direction by êz, they
are given by T even = T even M̂ × [(êz × E) × M̂] and T odd =
T odd(êz × E) × M̂ to lowest order in M̂.
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In bilayer systems based on 5d transition metals with large
spin Hall effect (SHE), such as AlOx /Co/Pt, MgO/CoFeB/Ta
and CoFeB/W, the dominant contribution to T even arises
from the SHE [22,23,27–31]. Conversely, in Ni80Fe20/Pt the
spin current pumped into Pt by exciting the ferromagnetic
resonance (FMR) of Ni80Fe20 induces an electric field via
the inverse spin Hall effect (ISHE) [32–34]. Rashba SOI
provides an important contribution to T odd in these bilayer
systems [14,15]. Due to the reciprocity between SOT and
ISOT, an additional ISOT is expected as well from the Rashba
SOI at the bilayer interface [7,8]. This theoretical prediction,
that the ISOT in bilayer systems should not arise purely from
the combination of spin pumping and ISHE, is supported by the
experimental observation that for the reciprocal phenomenon,
the SOT, T odd can be as large as or even larger than T even

[24–26].
So far, only the dc voltage due to FMR-driven ISOT has

been studied intensively in bilayer systems [34–38]. However,
after the theoretical prediction [39] that the ac component is
expected to be much larger than the dc one, several recent
experiments have been devoted to its measurement [40–42].
As will be discussed in this work, it is expected from the
reciprocity of ISOT and SOT that the dc voltage generated
by the FMR-driven ISOT is proportional to T even, while
the ac voltage is determined by both T even and T odd. Since
the ac voltages associated with T even and T odd exhibit a
phase difference of ±90◦, a nontrivial phase relationship
between ac signal and magnetization trajectory is expected.
Phase-sensitive measurements of the ac ISOT signal induced
under FMR can thus be complementary to experiments
on the SOT phenomenon. Both types of experiments, i.e.,
measuring the induced voltage under FMR on the one hand
and measuring on the other hand the current-induced torque
on the magnetization, can thus serve to determine T even and
T odd and from them the parameters needed to model them,
notably, spin-diffusion length, spin-mixing conductance, SHE
angle, as well as Rashba and Dresselhaus parameters.

This paper is organized as follows: In Sec. II we discuss the
Kubo formalism expressions for both SOT and ISOT. In the

1098-0121/2015/92(6)/064415(19) 064415-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.064415
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case of the SOT phenomenon, the torque on the magnetization
is given by T = t E, which defines the torkance tensor t . We
show that also the ISOT can be captured conveniently in terms
of t , which is a consequence of the reciprocity between SOT
and ISOT. In Sec. II B we show that expressions for both ISOT
and Gilbert damping can be derived consistently based on
Kohn-Sham theory with a time-dependent exchange field. In
Sec. II C we show that these expressions can also be obtained
by expressing general many-body susceptibilities in terms
of the corresponding Kohn-Sham susceptibilities. Exploiting
the reciprocity between SOT and ISOT we then predict in
Sec. III the angular dependence of ISOT in magnetic bilayers
from the angular dependence of SOT recently measured
in these systems. In particular, we derive and discuss the
FMR-induced currents for various magnetization directions
in bilayer systems. In Sec. III B a minimal model to describe
even SOT and ISOT in bilayers is discussed. In Sec. III C we
consider odd SOT and ISOT within the Boltzmann formalism.
In Sec. IV we investigate SOT and ISOT for a magnetic bilayer
composed of a Co layer on Pt(111). Computing spin currents,
ISOT-induced charge currents and torkances layer resolved
we make contact with phenomenological models and extract
model parameters. We conclude by a summary in Sec. V.

II. RELATIONSHIP BETWEEN DIRECT SOT
AND INVERSE SOT

A. Induced currents under time-dependent magnetization

Reciprocity between current-induced torques and spin-
motive forces has been discussed in detail in the framework of
phenomenological modeling [18,19,43,44]. In this section, we
revisit this reciprocity on the basis of the Kubo linear-response
formalism, which is well suited to study SOT and ISOT from
first principles.

Within the local spin density approximation (LSDA), the
interacting many-electron system is described by an effective
single-particle Hamiltonian of the form

H (r,t) = H0(r) − m · M̂(t)�xc(r), (1)

where the time-independent H0 contains kinetic energy, scalar
potential, and SOI, while the second term on the right-hand
side describes the exchange interaction. M̂(t) is a normalized
vector which points in the direction of magnetization. In
order to describe the electronic system at the ferromagnetic
resonance we assume that M̂(t) is precessing. The time
dependence of the Hamiltonian arises from this precession of
magnetization. m = −μBσ with the Bohr magneton μB and
the vector of Pauli spin matrices σ = (σx,σy,σz)T is the spin
magnetic moment operator. �xc(r) is the exchange field, i.e.,
the difference between the potentials of majority and minority
electrons �xc(r) = 1

2μB
[V eff

minority(r) − V eff
majority(r)]. Around the

time t we can approximate the motion of M̂ by

M̂(t+�t)−M̂(t) � d M̂(t)

dt
�t � d M̂(t)

dt

sin(ω�t)

ω
(2)

for small time changes �t and a small but arbitrary fre-
quency ω with ω�t � 1. Likewise, the Hamiltonian can be

approximated as

H (r,t + �t) � H (r,t) − m · d M̂(t)

dt
�xc(r)

sin(ω�t)

ω
. (3)

The �t-dependent term

V (r,�t) = −m · d M̂(t)

dt
�xc(r)

sin(ω�t)

ω

= −m·
[

M̂(t)×
(
d M̂(t)

dt
×M̂(t)

)]
�xc(r)

sin(ω�t)

ω

= sin(ω�t)

ω

(
M̂(t) × d M̂(t)

dt

)
· T (r,t) (4)

acts as a time-dependent perturbation on the eigenstates
of H (r,t). Here, T (r,t) = m × M̂(t)�xc(r) is the torque
operator.

Within linear response, the current density in α direction jα ,
induced by the time-dependent perturbation Eq. (4), is given
by

jα(t)=
∑

β

e

V
lim
ω→0

ImGR
vα ,Tβ

[�ω,M̂(t)]

�ω

(
M̂(t)×d M̂(t)

dt

)
β

, (5)

where e > 0 is the elementary positive charge, V is the volume,
and GR

vα ,Tβ
(�ω,M̂) is the Fourier transform of the retarded

velocity-torque correlation function, i.e.,

GR
vα ,Tβ

(�ω,M̂) = −i

∫ ∞

0
dt eiωt 〈[vα(t),Tβ(0)]−〉, (6)

evaluated for the time-independent Hamiltonian

HM̂ (r) = H0(r) − m · M̂�xc(r) (7)

of a system with magnetization in direction M̂ = M̂(t).
Equation (6) describes the correlation between the polar vector
v and the axial vector T . This polar-axial correlation is nonzero
only when inversion symmetry is broken.

Next, we compare Eq. (5) to the expressions describing
SOTs. Within linear response to an applied electric field E
the SOT on the magnetization is T (M̂) = t(M̂)E, where the
torkance tensor t(M̂) is given by [31,45]

tαβ(M̂) = −e lim
ω→0

ImGR
Tα,vβ

(�ω,M̂)

�ω
(8)

in terms of the Fourier transform of the retarded torque-
velocity correlation function

GR
Tα,vβ

(�ω,M̂) = −i

∫ ∞

0
dt eiωt

〈
[Tα(t),vβ(0)]−

〉
(9)

of the system with Hamiltonian (7).
The spectral densities of the Green functions defined in

Eqs. (6) and (9) are given by

Svα ,Tβ
(t,t ′,M̂) = 1

2π
〈[vα(t),Tβ(t ′)]−〉,

STα,vβ
(t,t ′,M̂) = 1

2π

〈
[Tα(t),vβ(t ′)]−

〉 (10)
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and their Fourier transforms satisfy the relations

STα,vβ
(�ω,M̂) = [Svβ ,Tα

(�ω,M̂)
]∗

,

Re
[
Svβ ,Tα

(�ω,−M̂)
] = − Re

[
Svβ ,Tα

(�ω,M̂)
]
,

Im
[
Svβ ,Tα

(�ω,−M̂)
] = Im

[
Svβ ,Tα

(�ω,M̂)
]
,

(11)

from which follows

STα,vβ
(�ω,M̂) = −Svβ ,Tα

(�ω,−M̂) (12)

and thus

GR
Tα,vβ

(�ω,M̂) = −GR
vβ ,Tα

(�ω,−M̂). (13)

This identity allows us to rewrite the magnetization-dynamics-
induced current density [Eq. (5)] in terms of the torkance tensor
as

jα(t) = 1

V

∑
β

tβα( − M̂(t))

(
M̂(t) × d M̂(t)

dt

)
β

. (14)

Equation (14) is the central result of this section. It shows that
it is very convenient to discuss the ISOT in terms of the very
same torkance tensor t as the SOT. We note in passing that
the torque-velocity correlations, which the torkance measures,
govern also the Dzyaloshinskii-Moriya interaction [45,46].

It is convenient to decompose the torkance tensor
into two components that are even and odd with re-
spect to magnetization reversal, respectively [31]: t(M̂) =
teven(M̂) + todd(M̂), where teven(M̂) = [t(M̂) + t(−M̂)]/2
and todd(M̂) = [t(M̂) − t(−M̂)]/2. Separating jα into the
components due to teven(M̂) and todd(M̂) yields

j even
α (t) = 1

V

∑
β

teven
βα (M̂(t))

(
M̂(t)× d M̂(t)

dt

)
β

,

j odd
α (t) = − 1

V

∑
β

todd
βα (M̂(t))

(
M̂(t)× d M̂(t)

dt

)
β

.

(15)

B. Completing the response matrix

When the electronic system is perturbed due to the time
dependence of the exchange field direction, a current density
is induced according to Eq. (5). This induced electric current
is not the only response of the electrons to this time-dependent
perturbation: Additionally, the torque −V �(M̂ × d M̂

d t
) acts on

the magnetization, where

	αβ = − 1

V
lim
ω→0

ImGR
Tα ,Tβ

(�ω,M̂)

�ω
. (16)

The sum of all torques on the magnetization has to be zero
from the point of view of an observer that rotates together with
the magnetization:

0 = t E − V �

(
M̂ × d M̂

d t

)
+ μ0MV M̂ × Heff . (17)

Here, the first term on the right-hand side is the SOT. Torques
such as the Gilbert damping torque, which are exerted on
the magnetization due to the magnetization dynamics, are
described by the second term. The third term summarizes

torques due to external magnetic fields and due to magnetic
anisotropy. M in the third term is the magnetization, i.e., MV

is the magnetic moment. In the presence of SOTs, the extended
Landau-Lifshitz-Gilbert equation runs

d M̂
d t

= −|γ |M̂ × Heff + αM̂ × d M̂
d t

− |γ |t E
μ0MV

, (18)

where γ = gμ0μB/� is the gyromagnetic ratio and α is the
Gilbert damping tensor. Comparison of Eqs. (18) and (17)
leads to

1

γ
= 1

2μ0M

∑
αβδ

εαβδ	
odd
αβ M̂δ, (19)

where εαβδ is the Levi-Civita symbol, and

α = |γ |�even

Mμ0
. (20)

It is straightforward to show that Eq. (20) combined with
Eq. (16) reproduces the Gilbert damping expressions used
within ab initio calculations [47]. In the absence of SOI, it is
found that [48]

	odd
αβ = − �

2μB

∑
γ

εαβγ Mγ . (21)

Inserting this result into Eq. (19) leads to the expected
nonrelativistic value of γ = − 2μ0μB

�
and g = −2.

If we consider the coupled problem where both the electric
field and the magnetization dynamics drive both the electric
current and induce torques, the even torkance teven determines
the off-diagonal elements of the symmetric part As of the
corresponding linear-response matrix, while the odd torkance
todd determines those of the antisymmetric part Aa:(

j

T/V

)
= [As(M̂) + Aa(M̂)]

(
E

M̂ × d M̂
dt

)
,

As(M̂) =
(

σ even(M̂) [teven(M̂)]T/V

teven(M̂)/V −�even(M̂)

)
, (22)

Aa(M̂) =
(

σ odd(M̂) −[todd(M̂)]T/V

todd(M̂)/V −�odd(M̂)

)
.

Here, σ is the tensor of electrical conductivity. The torque T in
the first equation, i.e., T = t E − V �(M̂ × d M̂

d t
), is the torque

on the magnetization due to the response of the electrons to
the two perturbations E and d M̂

d t
. According to Eq. (17), the

sum of this torque and the torques due to magnetic anisotropy
and external magnetic fields is zero. Due to the Onsager
relation σαβ(M̂) = σβα(−M̂) the even part of the conductivity
tensor is symmetric, i.e., σ even

αβ (M̂) = σ even
βα (M̂), while the

odd part is antisymmetric, i.e., σ odd
αβ (M̂) = −σ odd

βα (M̂) [49].

Similarly, 	even
αβ (M̂) = 	even

βα (M̂) and 	odd
αβ (M̂) = −	odd

βα (M̂).

Consequently, As(M̂) is indeed symmetric and additionally
even with respect to magnetization reversal. Likewise, Aa(M̂)
is indeed antisymmetric and additionally odd with respect to
magnetization reversal. Therefore, the linear-response matrix
A(M̂) = As(M̂) + Aa(M̂) satisfies the symmetry

(A(M̂))T = A(−M̂), (23)

064415-3
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which summarizes the Onsager relations of σ , �, and t in a
compact form.

Equations (16) and (22) are the central results of this
section. They show that Gilbert damping α [Eq. (20)],
gyromagnetic ratio γ [Eq. (19)], as well as ISOT [Eq. (5)]
can be extracted coherently and consistently from time-
dependent perturbation theory, where the perturbation due to
magnetization dynamics is given by Eq. (4).

From the point of view of adiabatic electron dynamics in
a time-dependent Hamiltonian (1), it is natural to consider
the precession of the exchange field as perturbation. The
electronic system responds to this perturbation by the ISOT
current [Eq. (5)]. Additionally, it responds by the torque
T = −V �(M̂ × d M̂

dt
) described by Eq. (16). However, when

the Onsager reciprocity principle is used to relate SOT and
ISOT in a phenomenological approach, typically a different
point of view is taken: The effective magnetic field Heff is
considered as a thermodynamic force and the time derivative of
magnetization plays the role of the associated thermodynamic
flux [19]. Instead of considering the response of ( j ,T/V )T

to the perturbation (E,M̂ × d M̂
dt

)T as we do in Eq. (22), one
considers then instead the response of the thermodynamic
fluxes ( d M̂

dt
, j )T to the thermodynamic forces (Heff,E)T.

Interestingly, d M̂
dt

appears then as a response rather than as
a perturbation. However, both formulations of the reciprocity
between SOT and ISOT are equivalent.

C. Many-electron response functions

In the previous two subsections we discussed SOT and ISOT
based on the effective single-particle Hamiltonian defined in
Eq. (1), where the exchange field �xc(r) needs to be obtained
self-consistently within LSDA. In this section, we consider
SOT and ISOT from the interacting many-electron point of
view.

When a small static electric field E is applied to a magnet
with broken inversion symmetry, its magnetization will assume
a new direction M̂ + δM̂ due to the action of the SOT.
We assume that E is sufficiently small to ensure that the
magnetization is not switched and that M̂ + δM̂ is time
independent. Within linear response the relation between δM̂
and E is given by

δM̂ = 1

MV
�(M̂)E (24)

with


αβ(M̂) = lim
ω→0

e

iω�
GR

mα,vβ
(�ω,M̂), (25)

where

GR
mα,vβ

(�ω,M̂) = −i

∫ ∞

0
dt eiωt 〈[mα(t),vβ (0)]−〉 (26)

is the retarded spin-moment velocity correlation function.
While the correlation functions defined in Eqs. (6), (9),
and (16) are evaluated based on the Kohn-Sham eigenfunctions
of the effective single-particle Hamiltonian (7), Eq. (26) has
to be evaluated based on the interacting many-electron wave

functions of the system, i.e.,

GR
mα,vβ

(�ω,M̂) =
∑

n

�

[ 〈�0|mα|�n〉〈�n|vβ |�0〉
E0 − En + �ω + iη

− 〈�0|vβ |�n〉〈�n|mα|�0〉
En − E0 + �ω + iη

]
, (27)

where �0 is the ground state and �n with n > 0 are the excited
states. The energies of the ground state and of the excited states
are E0 and En, respectively. We use the symbol GR to denote
the retarded many-electron response functions while we use
GR to denote the retarded Kohn-Sham single-particle response
functions.

We can quantify the SOT that gives rise to the rotation of
magnetization δM̂ in Eq. (24) in terms of the magnetic field
HSOT that would need to be applied perpendicular to M̂ to
achieve the same tilt δM̂ without applied electric field E. The
relation between δM̂ and HSOT is described by the transverse
magnetic susceptibility χ :

MδM̂ = χ (M̂)HSOT, (28)

where

χαβ(M̂) = − μ0

V �
GR

mα,mβ
(�ω = 0,M̂). (29)

The static transverse magnetic susceptibility χ (M̂) contains
the information on the magnetic anisotropy [50]: When the
magnetization is tilted away from the easy axis due to the
applied transverse magnetic field HSOT, the additional internal
magnetic field

HMAE = −M[χ(M̂)]−1δM̂ (30)

due to magnetic anisotropy acts on the magnetization. The tilt
δM̂ is such that HMAE + HSOT = 0. Equating the right-hand
sides of Eqs. (24) and (28) we obtain an expression for the
magnetic field HSOT:

HSOT = 1

V
[χ (M̂)]−1�(M̂)E. (31)

This magnetic field exerts the torque μ0MV M̂ × HSOT on the
magnetization. Exactly the same torque acts on the magnetiza-
tion when the electric field E is applied instead of the magnetic
field HSOT, i.e., the SOT is given by μ0MV M̂ × HSOT. The
corresponding torkance can be written as

t̃(M̂) = μ0M M̂ × [χ(M̂)]−1�(M̂). (32)

The applicability of Eq. (8) is restricted to LSDA because it is
based on the torque operator T and hence on the exchange field
�xc(r). In contrast, Eq. (32) provides a general formulation of
the torkance.

In order to show that Eq. (32) reduces to Eq. (8) within
LSDA, i.e., t̃(M̂) = t(M̂), we need to express the many-
electron response functions �(M̂) and χ (M̂) through the
corresponding single-particle Kohn-Sham response functions


KS
αβ (M̂,r) = lim

ω→0

e

iω�
GR

mα (r),vβ
(�ω,M̂) (33)

and

χKS
αβ (M̂,r,r ′) = −μ0

�
GR

mα (r),mβ (r ′)(�ω = 0,M̂), (34)

064415-4



DIRECT AND INVERSE SPIN-ORBIT TORQUES PHYSICAL REVIEW B 92, 064415 (2015)

where mα(r) is the operator of spin magnetic moment density
at position r , i.e.,

∫
d3r mα(r) = mα = −μBσα . When an

electric field E is applied to the system, the transverse
component of the change of magnetization at position r , i.e.,
m(r)δM̂(r), is described by the integral equation

m(r)δM̂(r) = �KS(M̂,r)E + 1

μ0

∫
d3r ′

× χKS(M̂,r,r ′)�xc(r ′)δM̂(r ′). (35)

The second term on the right-hand side takes into account
that within LSDA the quasiparticles respond not only to the
applied fields but also to the induced fields. In order to solve
this integral equation approximatively, we assume that the
change of magnetization direction is independent of position,
i.e., δM̂(r) = δM̂. Multiplying both sides of Eq. (35) by
�xc(r)M̂× from the left, and integrating over position r we
obtain

�̄xcMV (M̂ × δM̂)

= t(M̂)E − 1

�

∑
αβ

êαGR
TαTβ

(�ω = 0,M̂)[M̂ × δM̂]β.

(36)

The average exchange field on the left-hand side is defined as

�̄xc =
∫

d3r �xc(r)m(r)∫
d3r ′m(r ′)

=
∫

d3r �xc(r)m(r)

MV
. (37)

To obtain the first term on the right-hand side of Eq. (36), we
made use of

M̂×
∫

d3 r �KS(M̂,r)�xc(r) = t, (38)

which follows from comparison of Eqs. (8) and (33). Solving
Eq. (36) for δM̂ and comparing to Eq. (24) yields the following
expression for �(M̂):

�(M̂) = −M̂×
[
�̄xc+ GR

T T (�ω = 0,M̂)

MV �

]−1

t(M̂). (39)

In order to obtain an expression for χ (M̂) in
Eq. (28), we need to replace �KS(M̂,r)E in Eq. (35) by∫

d3 r ′χKS(M̂,r,r ′)HSOT, which yields the equation

m(r)δM̂(r) =
∫

d3 r ′χKS(M̂,r,r ′)�xc(r ′)
HSOT

�̄xc

+ 1

μ0

∫
d3r ′χKS(M̂,r,r ′)�xc(r ′)δM̂(r ′),

(40)

where we replaced the magnetic field HSOT by
HSOT�xc(r ′)/�̄xc because both magnetic fields produce the
same torque on the magnetization [50]:

μ0 M̂×HSOT

�̄xc

∫
d3r m(r)�xc(r) = μ0V M× HSOT. (41)

Multiplying both sides of Eq. (40) by �xc(r)M̂× from the left,
and integrating over position r , we obtain

�̄xcMV (M̂ × δM̂)

= − μ0

��̄xc

∑
αβ

êαGR
TαTβ

(�ω = 0,M̂)[M̂ × HSOT]β

− 1

�

∑
αβ

êαGR
TαTβ

(�ω = 0,M̂)[M̂ × δM̂]β. (42)

Comparing Eqs. (42) and (36) leads to

t(M̂)E = − μ0

��̄xc
GR

T T (�ω = 0,M̂)[M̂ × HSOT]. (43)

In the absence of SOI, GR
T T (�ω = 0,M̂) is given by (see

Appendix)

GR
T T (�ω = 0,M̂) = −�MV �̄xc[1 − M̂

T
M̂]. (44)

We assume that the magnetic anisotropy is small compared
to the exchange splitting. In this case, we can approximate
GR

T T (�ω = 0,M̂) in Eq. (43) by Eq. (44) and obtain

T SOT = μ0MV [M̂ × HSOT] = t(M̂)E. (45)

Equation (45) shows that the description of the SOT through
Eq. (32) in terms of many-electron response functions (25)
and (29) recovers the single-particle expression (8).

Solving Eq. (42) for δM̂ and comparing to Eq. (28) yields

χ(M̂) = μ0

�V �̄xc
M̂ ×

[
�̄xc

+GR
T T (�ω = 0,M̂)

MV �

]−1

GR
T T (�ω = 0,M̂)M̂ × ,

(46)

where M̂× is a shorthand for the matrix

1

M

⎛
⎝ 0 −M3 M2

M3 0 −M1

−M2 M1 0

⎞
⎠ = M̂ ×. (47)

Assuming that the anisotropy energy is much smaller than the
exchange splitting, we can approximate the rightmost GR

T T in
Eq. (46) by Eq. (44) and obtain

χ (M̂) = −μ0M M̂ ×
[
�̄xc + GR

T T (�ω = 0,M̂)

MV �

]−1

M̂ ×.

(48)

The difference between the right-hand and the left-hand
sides of Eq. (44) describes the magnetic anisotropy (see
Appendix). Therefore, the remaining GR

T T in Eq. (48) cannot
be approximated by Eq. (44). Inserting Eqs. (48) and (39) into
Eq. (32) leads to the identity t̃(M̂) = t(M̂), showing again the
equivalence between the single-particle and the many-electron
expressions [Eqs. (8) and (32)], respectively.

Using Eq. (48) we can rewrite Eq. (39) as

�(M̂) = − 1

μ0M
χ (M̂)M̂ × t(M̂). (49)
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In this expression, M̂ × t(M̂) on the right-hand side can
be interpreted in terms of a current-induced effective mag-
netic field HSOT = −[M̂ × t(M̂)E]/(MV μ0). The transverse
magnetic susceptibility χ(M̂) describes the response of the
magnetization to HSOT.

Next, we consider the generation of a current density j
due to a time-dependent applied magnetic field Hext(ω,t) =
Hext(ω)e−iωt . Denoting the corresponding linear-response
tensor by �(M̂,ω) we can write

j = �(M̂,ω)Hext(ω)e−iωt

� d �(M̂,ω)

d ω

∣∣∣∣
ω=0

ωHext(ω)e−iωt

= i�′(M̂)
d Hext(ω,t)

d t
, (50)

where �′(M̂) denotes the frequency derivative, i.e., �′(M̂) =
d �(M̂,ω)

d ω
|
ω=0

. We used that �(M̂,ω = 0) does not generate an

ISOT current and we expanded �(M̂,ω) up to first order in
frequency. Assuming that the field Hext(ω,t) is transverse to
magnetization, we can use the transverse magnetic susceptibil-
ity χ (M̂) [Eq. (28)] to express it in terms of the corresponding
tilt of the magnetization direction. This allows us to relate j
to the time derivative of the magnetization direction:

j = iM�′(M̂)[χ(M̂)]−1 d M̂
d t

= −iM�′(M̂)[χ(M̂)]−1 M̂ ×
[

M̂ × d M̂
d t

]
. (51)

We can use the retarded velocity spin-moment correlation
function

GR
vα ,mβ

(�ω,M̂) = −i

∫ ∞

0
dt eiωt 〈[vα (t),mβ(0)]−〉 (52)

to express �′(M̂) as follows:

�′
αβ(M̂) = lim

ω→0

d

d ω

eμ0

�V
GR

vα ,mβ
(�ω,M̂). (53)

The spectral densities of the Green functions defined in
Eqs. (26) and (52) are given by

Smα,vβ
(t,t ′,M̂) = 1

2π
〈[mα(t),vβ(t ′)]−〉,

Svα ,mβ
(t,t ′,M̂) = 1

2π
〈[vα(t),mβ(t ′)]−〉

(54)

and their Fourier transforms satisfy the relations

Smα,vβ
(�ω,M̂) = [

Svβ ,mα
(�ω,M̂)

]∗
,

Re
[
Svβ ,mα

(�ω,−M̂)
] = Re

[
Svβ ,mα

(�ω,M̂)
]
, (55)

Im
[
Svβ ,mα

(�ω,−M̂)
] = −Im

[
Svβ ,mα

(�ω,M̂)
]
,

from which follows

Smα,vβ
(�ω,M̂) = Svβ ,mα

(�ω,−M̂) (56)

and thus

GR
mα,vβ

(�ω,M̂) = GR
vβ ,mα

(�ω,−M̂) (57)

and

�′(M̂) = lim
ω→0

d

d ω

eμ0

�V

[
GR

m,v(�ω,−M̂)
]T

. (58)

Using Eq. (32), [M̂×]T = −M̂× [see Eq. (47)] and the
Onsager relation χ(M̂) = [χ(−M̂)]T we can relate �′(M̂)
and the torkance t̃(M̂) as follows:

[ t̃(−M̂)]T = −iV M�′(M̂)[χ(M̂)]−1 M̂ ×. (59)

This allows us to rewrite Eq. (51) as

j = 1

V
[ t̃(−M̂)]T M̂ × d M

d t
(60)

in agreement with Eq. (14) derived earlier in the single-particle
formalism.

The central result of this section is Eq. (32), which provides
a general definition of the torkance that is not limited to the
framework of Kohn-Sham theory. The reciprocity between
direct and inverse SOT as discussed in the previous subsection
based on Kohn-Sham theory remains valid within the many-
electron response function formalism used in this section.

III. SOT AND ISOT IN BILAYER SYSTEMS

In the following, we discuss SOT and ISOT in magnetic
bilayer systems composed of a ferromagnetic layer (FM)
deposited on a normal metal (NM). When the electric field
E = Ex êx is applied in plane along the x direction, the
torques satisfy

T even(M̂) = Ex M̂ × (êy × M̂)[A0 + A2(êz × M̂)2 + . . . ]

+ Ex(M̂×êz)(M̂ · êx)[B2 + B4(êz×M̂)2 + . . . ]

(61)

and

T odd(M̂) = Ex(êy × M̂)[C0 + C2(êz × M̂)2 + . . . ]

+ Ex M̂ × (M̂ × êz)(M̂ · êx)

× [D2 + D4(ez × M̂)2 + . . . ] (62)

in bilayer systems composed of polycrystalline, disordered,
or amorphous layers with continuous rotational symmetry
around the z axis [24].

To describe the ISOT in bilayer systems, we consider
instead of the current density jα the current per length Jα ,
which is obtained by replacing the current density operator
−evα/V by −evα/A, where A is the cross-sectional area of
the unit cell of the bilayer normal to the stacking direction:

Jα(t) = 1

A

∑
β

tβα( − M̂(t))
(

M̂(t) × d M̂(t)

dt

)
β

. (63)

Since the atom-resolved current is expected to vary signif-
icantly between atomic layers in bilayer systems, Jα is a
suitable definition of current density in such systems. In terms
of J , the electric current flowing in the x direction is given
by Ix = JxLy , where Ly is the length of the system in the y

direction, and similarly Iy = JyLx is the electric current in the
y direction. Separating Jα into the components due to teven(M̂)
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and todd(M̂) yields

J even
α (t) = 1

A

∑
β

teven
βα (M̂(t))

(
M̂(t) × d M̂(t)

dt

)
β

, J odd
α (t) = − 1

A

∑
β

todd
βα (M̂(t))

(
M̂(t) × d M̂(t)

dt

)
β

. (64)

In the following, we discuss the magnetization-dynamics-induced current density Jx in the x direction. Using Eqs. (61)
and (62) in (64) we obtain

J even
x (t) = A0

A
[M̂ × (êy × M̂)] ·

[
M̂ × d M̂

dt

]
+ A2

A
[M̂ × (êy × M̂)] ·

[
M̂ × d M̂

dt

]
(êz × M̂)2

+ B2

A
(M̂ × êz) ·

[
M̂ × d M̂

dt

]
(M̂ · êx) + B4

A
(M̂ × êz) ·

[
M̂ × d M̂

dt

]
(M̂ · êx)(êz × M̂)2 + . . . (65)

and

J odd
x (t) = −C0

A
(êy × M̂) ·

[
M̂ × d M̂

dt

]
− C2

A
(êy × M̂) ·

[
M̂ × d M̂

dt

]
(êz × M̂)2

− D2

A
[M̂ × (M̂ × êz)] ·

[
M̂ × d M̂

dt

]
(M̂ · êx) − D4

A
[M̂ × (M̂ × êz)] ·

[
M̂ × d M̂

dt

]
(M̂ · êx)(êz × M̂)2 − . . . . (66)

A. Current densities induced by FMR through the inverse SOT

First, we consider the case of FMR-driven magnetization
precession around the z axis in a circular orbit, i.e.,

M̂(t) = [sin(θ ) cos(ωt), sin(θ ) sin(ωt), cos(θ )]T, (67)

where θ is the cone angle. Inserting Eq. (67) into Eqs. (65)
and (66), we obtain

J even
x (t) = −ω

A
sin(θ ) cos(θ ) sin(ωt)[A0 + A2 sin2(θ ) + . . . ],

J odd
x (t) = ω

A
sin(θ ) cos(ωt)[C0 + C2 sin2(θ ) + . . . ]

+ ω

A
sin(θ ) cos(ωt)[D2 sin2(θ )

+D4 sin4(θ ) + . . . ]. (68)

For small-cone angles θ the sin2(θ ) factors suppress the
contributions from A2, C2, D2 and further higher-order terms.
In the small-cone limit, the ISOT for magnetization precession
around the z axis can thus be expressed in terms of the torkance

for magnetization along z, if A0 = teven
yx (M̂ = êz) and C0 =

todd
xx (M̂ = êz) are used. Experiments [24,25] and ab initio

calculations [31] have found that A0 and C0 can be of the same
order of magnitude in AlOx /Co/Pt and MgO/CoFeB/Ta. The
two contributions J even

x (t) and J odd
x (t) are therefore expected

to exhibit similar amplitudes. Since J even
x (t) ∝ sin(ωt) while

J odd
x (t) ∝ cos(ωt), the even and odd parts are phase shifted

with respect to each other.
Next, we consider FMR-driven magnetization precession

around the y axis. In this case, the magnetization follows
an elliptical trajectory in thin bilayer films due to the
demagnetizing field [51]

M̂(t) = 1

η(t)
[sin(θ ) sin(ωt)ε, cos(θ ), sin(θ ) cos(ωt)]T, (69)

where ε is the ratio of the major axis to the minor axis of
the ellipse and normalization of M̂(t) is assured by η(t) =√

1 + [ε2 − 1] sin2(ωt) sin2(θ ). The resulting induced current
density is given by

J even
x (t) = ωε sin2 θ

Aη2(t)

[
A0 + A2

η2(t) − cos2(ωt) sin2 θ

η2(t)
+ . . .

]
− ωε sin2 θ sin2(ωt)

Aη4(t)
[1 + sin2 θ (ε2 − 1)]

×
[
B2 + B4

η2(t) − cos2(ωt) sin2 θ

η2(t)
+ . . .

]
,

(70)

J odd
x (t) = ω(1 − ε2)

2Aη3(t)
sin2 θ cos θ sin(2ωt)

[
C0 + C2

η2(t) − cos2(ωt) sin2 θ

η2(t)
+ . . .

]

− ωε2

2Aη3(t)
sin(2ωt) sin2 θ cos θ

[
D2 + D4

η2(t) − cos2(ωt) sin2 θ

η2(t)
+ . . .

]
.

For small angles θ the terms proportional to sin2 θ dominate, while terms proportional to sin4 θ and higher are suppressed. Thus,
we can approximate in the small-cone limit

J even
x (t) = ωε

A
sin2 θ [A0 + A2 + A4 + . . . ] − ωε

2A
sin2 θ [1 − cos(2ωt)][B2 + B4 + . . . ],

J odd
x (t) = ω

2A
sin2 θ sin(2ωt)(1 − ε2)[C0 + C2 + . . . ] − ω

2A
sin2 θ sin(2ωt)ε2[D2 + D4 + . . . ].

(71)

064415-7
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J even
x is the sum of a dc component and an ac component with frequency 2ω, while J odd

x consists of only an ac part with frequency
2ω. The ac components of the even and odd parts are phase shifted. Compared to the induced current for precession around
the z axis [Eq. (68)], the amplitude is expected to be typically reduced by roughly a factor of sin θ when the magnetization
precesses around the y axis. The dc component of the voltage −RxxJ

even
x Ly , where Rxx is the resistance, has been measured for

several bilayer systems and is usually interpreted as the voltage arising from the conversion of pumped dc spin current via the
ISHE [34–36].

We turn now to the FMR-driven magnetization precession around the x axis. Again, the magnetization follows an elliptical
trajectory

M̂(t) = 1

η̃(t)
[cos(θ ), sin(θ ) cos(ωt)ε, sin(θ ) sin(ωt)]T, (72)

with ε the ratio of major axis to minor axis of the ellipse and η̃(t) =
√

1 + [ε2 − 1] cos2(ωt) sin2(θ ). In this case, the current
density induced by the precessing magnetization is given by

J even
x (t) = − ω

2Aη̃2(t)
sin(2θ ) cos(ωt)

{
A0 + A2

η̃2(t)
[cos2 θ + ε2 sin2 θ cos2(ωt)] + . . .

}

+ ω

2Aη̃4(t)
sin(2θ ) cos(ωt)[1 + sin2 θ (ε2 − 1)]

{
B2 + B4

η̃2(t)
[cos2 θ + ε2 sin2 θ cos2(ωt)] + . . .

}
,

(73)

J odd
x (t) = − ωε

Aη̃3(t)
sin θ sin(ωt)

{
C0 + C2

η̃2(t)
[cos2 θ + ε2 sin2 θ cos2(ωt)] + . . .

}

− ωε

Aη̃3(t)
sin θ cos2 θ sin(ωt)

{
D2 + D4

η̃2(t)
[cos2 θ + ε2 sin2 θ cos2(ωt)] + . . .

}
.

In the small-cone limit, we obtain

J even
x (t) = ω

2A
sin(2θ ) cos(ωt)[B2 + B4 + . . . − A0 − A2 − . . . ] = −teven

yx (M̂ = êx)
ω

2A
sin(2θ ) cos(ωt),

J odd
x (t) = −ω

A
ε sin θ sin(ωt)[C0 + C2 + . . . + D2 + D4 + . . . ] = todd

zx (M̂ = êx)
ω

A
ε sin θ sin(ωt).

(74)

Even if A2, B2, C2, and D2 are nonzero, i.e., even in the
presence of anisotropic SOT, the ISOT for magnetization
precession around the x axis can thus be expressed in terms
of the torkance for magnetization along x. The even and odd
contributions are again phase shifted and the dependence on
the cone angle is ∝ sin θ in the limit of small θ as in the
case of magnetization precession around the z axis, promising
a significantly larger ISOT signal [39] compared to the case
with magnetization precessing around the y axis.

The main result of this section are the expressions for the
ISOT currents given in Eq. (68) (magnetization precession
around z), Eq. (71) (magnetization precession around y), and
Eq. (74) (magnetization precession around x). We stress that
these expressions have been derived without any assumptions
on the underlying mechanism (such as SHE or interfacial
SOI) and are thus generally valid in bilayer systems with
continuous rotational symmetry around the z axis. In all three
cases, the coefficients C0, C2, . . . and D2, D4, . . . , which
govern the odd torkance, give rise to an ac current, but never
to a dc current. Thus, complete characterization of ISOT in
experiments requires the measurement of the ac component.

B. Reciprocity between the even SOT and the even ISOT

In magnetic bilayer systems that involve a normal metal
(NM) layer with large SHE it is expected that an important
contribution to the even SOT arises from SHE [22,23,27,52].
In particular when the NM layer is thin, the SHE in the NM

layer will generally differ from the SHE in a corresponding
bulk system. Even when the NM layer is thick, close to the
interface with the magnet the electronic structure is modified
due to the hybridization of the electronic states of the NM
with those of the ferromagnet (FM). This electronic-structure
change is expected to entail a modification of the SHE in
the NM close to the interface. Furthermore, the proximity
with the FM layer induces magnetic moments in the NM at
the interface due to which the SHE is also modified [53].
Additionally, qualitatively new mechanisms for SHE are added
by the presence of the interface: When an electric field is
applied to the bilayer in the in-plane direction, part of the
in-plane electric current is carried by interface states that are
evanescent waves along the stacking direction in the NM. That
evanescent waves can also contribute to the SHE has been
discussed [54] in the context of tunnel junctions but is also
true for evanescent waves in all-metallic bilayer systems.

Rather than using the term SHE only for the bulk contri-
bution, we will in this work often denote by SHE the total
spin current generated by an applied electric field, including
the interface modifications discussed above into the term SHE.
Recently, we have shown within ab initio calculations that the
even SOT in Co/Pt and Mn/W bilayers arises from the flux of
spin current from the NM into the FM layer [31]. Within our
terminology, this spin flux arises from the SHE.

In the following, we discuss a minimal model to describe
the SHE contribution to the even SOT. We consider a bilayer
system composed of a semi-infinite ferromagnetic layer (FM)
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on a semi-infinite normal metal (NM). The interface between
FM and NM is located at z = 0. We estimate the SOT arising
from the SHE in NM, when an electric field Ex êx is applied
in the x direction. Deep inside NM, i.e., for z � 0, the spin
current density flowing in the z direction is

Qy = σy
zxEx = �

2e
σxxEx tan γSHE , (75)

where σ
y
zx is the SHE conductivity in NM, tan γSHE is the

SHE angle, and σxx is the normal conductivity in NM. As
discussed above, the SHE is generally expected to be modified
close to the NM/FM interface. However, in order to obtain a
minimal model, we neglect this expected position dependence
of SHE and assume that the SHE can effectively be described
by a single parameter σ

y
zx . We assume that a fraction ξ of Qy

is transmitted through the NM/FM interface and absorbed by
FM, thereby causing a torque on its magnetization, which we
assume to point in the z direction. This SHE-to-SOT efficiency
ξ can be thought of as the spin-current transmissivity [55]
or transparency [56] of the NM/FM interface. In metallic
magnetic bilayer systems, ξ is typically of the order of
1: in experiments on NiFe/Pt, it was estimated to be ξ ≈
0.4–0.6 [55]. In ab initio calculations of FePt/Pt, ξ ≈ 0.6
was found [57]. Denoting the xy cross-sectional area of
the unit cell by A, the torque per unit cell is given by
T even

y = ξAQy = teven
yx Ex with

teven
yx (M̂ = êz) = ξAσy

zx = ξA
�

2e
σxx tan γSHE. (76)

Next, we consider the even ISOT arising from the combined
action of spin pumping and ISHE. The spin current density
pumped adiabatically into NM is determined by [33]

Q(z = 0) = �

4π
Reg↑↓ M̂ × d M̂

dt
, (77)

where g
↑↓ is the (generally complex) spin-mixing conductance

per cross-sectional area. The imaginary part of g
↑↓ is assumed

to be negligible in Eq. (77). If spin transport in NM is diffusive,
a spin accumulation s(z) forms in NM due to the spins
pumped into NM. The spin current in NM is proportional
to the gradient of the spin accumulation s(z). Since the spin
accumulation decays exponentially in NM, s(z) = s(0)ez/λsd ,
where λsd is the spin-diffusion length, also the spin current
decays exponentially in NM, i.e., Q(z) = Q(0)ez/λsd [34,39].
In the case of magnetization precession around the y axis
[Eq. (69)], the dc spin current flowing in NM in the z direction
is therefore given by

Qy(z) = −�ω

4π
Reg↑↓ sin2(θ ) ε ez/λsd . (78)

Due to ISHE this spin current is converted into an in-plane
charge current flowing in the x direction:

j even
x (z) = −2e

�
Qy(z) tan γISHE

= eω

2π
Reg↑↓ sin2(θ ) ε ez/λsd tan γISHE , (79)

where tan γISHE is the ISHE angle. Thus, a single characteristic
length, the spin-diffusion length λsd, determines the position

dependence of s(z), Qy(z), and j even
x (z) within this model:

j even
x (z) ∝ Qy(z) ∝ s(z) ∝ ez/λsd . (80)

Integration of the current density (79) from z = −∞ to z = 0
yields the current per length flowing in NM:

J even
x = eω

2π
Reg↑↓ sin2(θ ) ε λsd tan γISHE . (81)

Using the small-cone limit of Eq. (70) and assuming A2 =
B2 = A4 = . . . = 0, we obtain the alternative expression

J even
x = ω

A
sin2(θ )εA0. (82)

Equating the two expressions for J even
x yields

A0 = A
e

2π
Reg↑↓λsd tan γISHE . (83)

Application of teven
yx (M̂ = êz) = A0 leads to

λsd = 2πteven
yx (M̂ = êz)

eAReg↑↓ tan γISHE

. (84)

Employing Eq. (76) and assuming tan γISHE = tan γSHE we
can recast Eq. (84) as

λsd = ξ�πσxx

e2Reg↑↓ . (85)

Equation (85) relates the SHE-to-SOT efficiency ξ with the
parameters we use to model the ISOT current and thereby
expresses the reciprocity between SOT and ISOT.

Even though this minimal model is derived for semi-infinite
layers, it can be applied to bilayers of finite thickness when
the layer thickness is much larger than λsd. When NM has the
finite thickness D, i.e., −D � z � 0, and when D � λsd is
not satisfied, Eq. (78) needs to be replaced by [34]

Qy(z) = −�ω

4π
Reg↑↓ sin2(θ ) ε

sinh z+D
λsd

sinh D
λsd

(86)

in order to take into account that the spin current is reflected
at the boundary of NM at z = −D.

In Secs. IV B and IV C, we will compare ISOT current
and spin-current densities obtained from ab initio calculations
to the minimal model described above. We will show that
the minimal model provides a satisfactory description of the
ab initio results. We will discuss that the main shortcoming
of the minimal model is the assumption that SHE and ISHE
can be described by a single position-independent parameter,
whereby the modification of SHE and ISHE close to the
interface is neglected.

C. Reciprocity between the odd SOT and the odd ISOT

In Sec. II, we demonstrated the reciprocity between ISOT
and SOT on general grounds. The odd SOT in the bilayer
systems considered in this work arises dominantly from the
intraband contribution to Eq. (8). This intraband contribution
can also be obtained from Boltzmann transport theory within
the constant relaxation-time approximation. In this section,
we study the odd SOT and the odd ISOT within Boltzmann

064415-9
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transport theory and show that the obtained expressions satisfy
the reciprocity formulated previously in Sec. II.

When an electric field E is applied, the occupation number
fkn of band n at k point k changes according to

δf
(1)
kn = −eτvkn · E δ(EF − Ekn), (87)

where τ is the relaxation time, EF is the Fermi energy, and
vkn = 〈ψkn|v|ψkn〉 is the group velocity of band n at k point k.
The change δf

(1)
kn of the occupancies results in the contribution

j (1)
α = − e

VN
∑
kn

vkαnδf
(1)
kn

= e2τ

VN
∑
knβ

vkαnvkβnEβ δ(EF − Ekn) (88)

to the electric current density and in the contribution

T (1)
α = −

∑
kn

Tkαnδf
(1)
kn

= eτ

N
∑
knβ

TkαnvkβnEβ δ(EF − Ekn), (89)

to the torque, where vkαn and Tkαn are the αth Cartesian
components of the group velocity vkn and of the torque
T kn = 〈ψkn|T |ψkn〉, respectively.

When the system is perturbed not by an electric field but by
the time dependence of the magnetization direction M̂(t), the
change of the occupancies is given by

δf
(2)
kn = τδ(EF − Ekn)T kn ·

[
M̂(t) × d M̂(t)

d t

]
(90)

instead of Eq. (87). Equation (90) follows from

δf
(2)
kn

τ
= −∂fkn

∂ M̂
· d M̂

d t
= − ∂fkn

∂Ekn

∂Ekn

∂ M̂
· d M̂

d t

= δ(EF − Ekn)

[
M̂(t) × ∂Ekn

∂ M̂

]
·
[

M̂(t) × d M̂(t)

d t

]

= δ(EF − Ekn)T kn ·
[

M̂(t) × d M̂(t)

d t

]
, (91)

where we set the temperature in the Fermi-Dirac distribution
function to zero such that fkn = θ (EF − Ekn) and ∂fkn/∂Ekn =
−δ(EF − Ekn). Additionally, we made use of[

M̂(t) × ∂Ekn

∂ M̂

]
= M̂(t) × 〈ψkn|

∂HM̂

∂ M̂
|ψkn〉 = T kn. (92)

Equations (90) and (91) hold under the condition that the
frequency ω of the precession of magnetization is small
compared to the relaxation rate τ−1, i.e., ω � τ−1. If the
condition ω � τ−1 is violated, one needs to solve the
Boltzmann equation assuming an explicit time dependence
of the distribution function. The expressions valid in that
case are obtained by replacing τ in Eqs. (90) and (91) as
follows:

τ → τ

1 − iωτ
. (93)

For magnetic bilayers such as Co/Pt we estimate that
10 THz < 1/(2πτ ), which is much larger than ferromagnetic
resonance frequencies in the GHz range. Therefore, we will
always assume ω � τ−1 in the following.

The current density induced due to the time dependence of
magnetization can be obtained from the change of occupancies
δf

(2)
kn given in Eq. (90):

j (2)
α = − e

VN
∑
kn

vkαnδf
(2)
kn

= − eτ

VN
∑
kn

vkαnδ(EF − Ekn)T kn ·
[

M̂(t) × d M̂(t)

d t

]
.

(94)

Similarly, the torque which damps the magnetization dynamics
is given by

T (2)
α = − 1

N
∑
kn

Tkαnδf
(2)
kn

= − τ

N
∑
kn

Tkαnδ(EF − Ekn)T kn ·
[

M̂(t) × d M̂(t)

d t

]
.

(95)

We can combine Eqs. (88), (89), (94), and (95) in the form
of Eq. (22) as follows:(

j̃

T̃/V

)
=
(

σ̃ − t̃T
/V

t̃/V −�̃

)(
E

M̂ × d M̂
dt

)
, (96)

where we defined j̃ = j (1) + j (2) and T̃ = T (1) + T (2). We
use the tilde to recall that according to Eqs. (88), (89), (94),
and (95), only intraband terms are considered in j̃ and T̃ , while
the complete expression for current density and torque contains
additional interband terms. The linear response coefficients σ̃ ,
t̃ , and �̃ are given by

σ̃αβ = e2τ

VN
∑
kn

vkαnvkβnδ(EF − Ekn),

t̃αβ = eτ

N
∑
kn

Tkαnvkβnδ(EF − Ekn),

	̃αβ = τ

VN
∑
kn

TkαnTkβnδ(EF − Ekn).

(97)

σ̃ and �̃ are even with respect to reversal of magnetization
direction M̂, while t̃ is odd. Equation (96) clearly shows that
the tensor t̃ governs both the odd SOT and the odd ISOT. The
Gilbert damping α̃ is related to �̃ by α̃ = |γ |�̃/(μ0M) [see
Eq. (20)], i.e.,

α̃αβ = |γ |τ
μ0V MN

∑
kn

TkαnTkβnδ(EF − Ekn), (98)

which agrees with the intraband term in the torque-correlation
formula of the Gilbert damping [50,58,59]. Thus, Eq. (90)
leads to a coherent description of the intraband contributions
to both the Gilbert damping and the odd ISOT. Moreover, the
expression obtained for the odd ISOT is reciprocal to the odd
direct SOT.

064415-10



DIRECT AND INVERSE SPIN-ORBIT TORQUES PHYSICAL REVIEW B 92, 064415 (2015)

IV. FIRST-PRINCIPLES CALCULATIONS

A. Computational method

In the following, we will discuss SOTs and ISOTs for a
bilayer composed of 3 layers of hcp Co on 20 layers of fcc
Pt(111), denoted in the following as Co(3)/Pt(20). We label the
atomic layers of the Pt layer by Pt1 through Pt20, where Pt20
is at the Co/Pt interface. Likewise, we label the atomic layers
of the Co layer by Co1 through Co3, where Co1 is at the Co/Pt
interface. We introduce a Cartesian coordinate system such
that the z axis is perpendicular to the atomic layers, i.e., along
the out-of-plane direction, and Pt20 has a smaller z coordinate
than Co1. The magnetization direction is set to M̂ = êz

in the calculation. In order to perform the linear-response
calculations of the torkance computationally efficiently, the
Wannier interpolation technique is employed [60–62]. For
this purpose, we express the electronic structure in terms
of maximally localized Wannier functions (MLWFs), using
18 MLWFs per atom. Details of the electronic-structure
calculation of Co(3)/Pt(20) are given in Ref. [31].

Within the independent particle approximation, the
torkance t defined in Eq. (8) can be expressed as sum of three
terms tαβ = t

I(a)
αβ + t

I(b)
αβ + t II

αβ , where [31,45]

t
I(a)
αβ = e

Nh

∑
k

Tr
〈
TαGR

k (EF)vβGA
k (EF)

〉
,

t
I(b)
αβ = − e

Nh

∑
k

Re Tr
〈
TαGR

k (EF)vβGR
k (EF)

〉
,

(99)

t II
αβ = e

Nh

∑
k

∫ EF

−∞
dE Re Tr

〈
TαGR

k (E)vβ

dGR
k (E)

dE

− Tα

dGR
k (E)

dE vβGR
k (E)

〉
,

with GR
k (E) the retarded Green function at k point k and energy

E , GA
k (E) the advanced one, N the number of k points, and

EF the Fermi energy. We model the effect of disorder by a
phenomenological band broadening � in the Green functions,
i.e., GR

k (E) = �[E − Hk + i�]−1.
We discuss the direct SOT in terms of the torkance, which

we compute according to Eq. (99). In order to obtain atom-
resolved torkances, we replace the torque operator in Eq. (99)
by an atom-resolved torque operator (see Ref. [31] for details).
We calculate the induced ISOT current in the Co(3)/Pt(20)
bilayer using Eq. (64) and the torkance obtained from Eq. (99).
However, it is desirable to determine also the spatial profile of
the ISOT current along the z direction. For this purpose, we
define the layer-resolved velocity operator

vkαnm(L) = vkαnmθn(L)θm(L), (100)

where θm(L) = 1 if MLWF orbital m belongs to layer L and
zero otherwise. Here, each MLWF is attributed to the one
atomic layer in which the center of the MLWF is located and

vkαnm = 1

�

∑
R

eik·RiRα〈Wn0|H |WmR〉 (101)

is the αth Cartesian component of the velocity operator at k

point k expressed in the basis of Wannier functions. Replacing

vα in Eq. (99) by vα(L) allows us to compute the ISOT current
within the atomic layer L.

The direct SOT is a response to the applied electric field E,
which exerts the mechanical force −eE on the electrons. By
artificially switching off the force −eE for some atomic layers,
we investigate which atomic layers participate in generating
the SOT. Noting that the mechanical force is represented in
Eq. (99) by the velocity operator, we replace vα in Eq. (99)
by vα(L) in order to study the SOT generated when the force
−eE acts only on the electrons in the atomic layer L. Thus, the
replacement of vα by vα(L) in Eq. (99) provides us not only
with the information on how the ISOT current is distributed in
Co(3)/Pt(20) along the stacking direction, but additionally it
also provides us with the information in which atomic layers
action of the force −eE is essential for the direct SOT. This
results from the reciprocity between ISOT and SOT, which
implies that the atomic layers that carry the ISOT current agree
to the atomic layers that participate in generating the SOT. In
order to describe the situation where the mechanical force is
switched off for the atomic layers Pt1 through L − 1 we use
the sum of Eq. (100) for the layers L,L + 1, . . . , i.e., we use
the modified velocity operator

v̄kαnm(L) = vkαnm

∑
L1�L

∑
L2�L

θn(L1)θm(L2) (102)

in Eq. (99). Here, the functions θm(L) are defined as above,
below Eq. (100).

As discussed in Sec. III B, the spin current flowing in the z

direction mediates an important contribution to the even ISOT
in bilayer systems. Thus, it is desirable to determine its spatial
profile along the z direction. For this purpose, we define the
layer-resolved spin-current density operator Qs(L) for spin
currents flowing in the z direction by

〈ψkn|Qs(L)|ψkm〉 = 1

A

∫
SL

dS · 〈ψkn|Qs(r)|ψkm〉, (103)

where the integration is over the boundary SL between layers
L − 1 and L, A is the xy cross-sectional area of the unit cell,
and Qs(r) is the spin-current density operator at point r . SOI is
only strong close to the atomic nuclei because it is proportional
to the electrostatic potential gradient. Since the boundary SL is
chosen to lie in the interstitial region, where SOI is negligible,
the nonrelativistic spin-current density operator can be used:

Qs(r) = �

2

�

2im
[δ(r − r̂)

⇒
∇ −

⇐
∇δ(r − r̂)]σs. (104)

By replacing in Eq. (5) the current density operator −evα/V

by Qs(L), we can determine the spin-current profile along the
stacking direction of the Co(3)/Pt(20) bilayer:

Qs(L,t) = 1

A

∑
β

wsβ(L,M̂(t))
[

M̂(t) × d M̂(t)

dt

]
β

, (105)

where we defined

wsβ(L,M̂) = −A lim
ω→0

ImGR
Qs (L),Tβ

(�ω,M̂)

�ω
, (106)
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with the Fourier transform of the retarded spin-current torque
correlation function

GR
Qs (L),Tβ

(�ω,M̂) = −i

∫ ∞

0
dt eiωt 〈[Qs(L),Tβ(−t)]−〉.

(107)

Within the independent particle approximation Eq. (106)
becomes wsβ(L) = w

I(a)
sβ (L) + w

I(b)
sβ (L) + wII

sβ(L), with

w
I(a)
sβ (L) = eA

Nh

∑
k

Tr
〈
Qs(L)GR

k (EF)TβGA
k (EF)

〉
,

w
I(b)
sβ (L) = − eA

Nh

∑
k

Re Tr
〈
Qs(L)GR

k (EF)TβGR
k (EF)

〉
,

w
II
sβ (L) = eA

Nh

∑
k

∫ EF

−∞
dE Re Tr

〈
Qs(L)GR

k (E)Tβ

dGR
k (E)

dE

−Qs(L)
dGR

k (E)

dE TβGR
k (E)

〉
, (108)

where we suppressed the M̂ dependence for notational
convenience. Comparison of Eqs. (77) and (105) yields the
following expression for the spin-mixing conductance:

Reg↑↓ = 4π

�A
wyy(L = Co1), (109)

where wyy(L = Co1) is proportional to spin current flowing
between the layers Pt20 and Co1. In Co/Pt bilayers teven

yx arises
almost entirely from the spin flux into the Co layer [31]. The
extraction of Reg↑↓ from wyy is therefore meaningful in this
case despite the presence of SOI in the calculation.

Similarly, as discussed in Sec. III B, SHE provides an
important contribution to the even SOT in bilayer systems.
The spin currents of the direct SHE are generated by the
applied electric field rather than by spin pumping. In order
to investigate the layer-resolved spin-current profile of these
spin currents in Co(3)/Pt(20), we define the coefficients

qsβ (L,M̂) = Ae lim
ω→0

ImGR
Qs (L),vβ

(�ω,M̂)

�ω
. (110)

For example, qyx(L) quantifies the linear response of spin
currents flowing in the z direction with spin pointing in the
y direction to the electric field in the x direction. Within
the independent particle approximation, qsβ (L) is expressed
similarly to the torkance [Eq. (99)]: only Tα has to be replaced
by −AQs(L) in the expressions.

For a given atomic layer, the difference between spin current
flowing in and spin current flowing out is the spin flux into that
atomic layer. In Co/Pt bilayer systems, the even SOT arises
dominantly from the spin flux into the Co layer [31]. The
linear-response coefficient of spin flux into layer L is given by

�qyx(L) = qyx(L) − qyx(L + 1), (111)

where according to Eqs. (103) and (110), qyx(L) describes spin
current flowing between layers L − 1 and L towards layer
L and −qyx(L + 1) describes spin current flowing between
layers L and L + 1 towards layer L.
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FIG. 1. (Color online) Triangles: layer-resolved even torkance
t even
yx for broadenings of � = 25 meV (upper graph) and � = 100 meV

(lower graph). Circles: linear-response coefficient of the layer-
resolved spin flux �qeven

yx [Eq. (111)]. Solid lines serve as guide to the
eye.

B. Even SOT

We first discuss the even torkance teven
yx, 25meV determined

from Eq. (99). At � = 25 meV, we obtain teven
yx, 25meV = 0.68 ea0

per unit cell, where ea0 is the atomic unit of torkance,
which amounts to ea0 = 8.478 × 10−30 Cm. A slightly smaller
value of teven

yx, 100 meV = 0.53 ea0 is calculated at � = 100 meV.
Dividing these torkances by the magnetic moment per unit
cell of μ = 5.78μB we compute the effective fields per
applied electric field of teven

yx, 25 meV/μ = 0.011 mT cm/V and
teven
yx, 100 meV/μ = 0.0084 mT cm/V.

In Fig. 1, we show the layer-resolved even torkance,
i.e., the linear-response coefficient of the torque acting on
the magnetization of a given layer, and the linear-response
coefficient of spin flux into layer L [Eq. (111)]. For the
Co layers, layer-resolved torkances and spin fluxes coincide
approximately. Thus, the even torkance in Co(3)/Pt(20) arises
dominantly from the spin current flowing into the Co layer,
consistent with the discussion in Sec. III B and with previous
work on Co/Pt bilayer systems [31].

In Fig. 2, we show the linear-response coefficients of the
layer-resolved spin current qeven

yx (L) as diamonds for two values
of broadening � = 25 and 100 meV [see Eq. (110) for the
definition of qeven

yx (L)]. Evaluating the SHE-to-SOT conversion
efficiency defined in Eq. (76) from the ratio of torkance to
maximal spin current we obtain ξ25 meV = teven

yx /[qeven
yx (L =

Pt11)] = 0.74. At � = 100 meV, the value is slightly lower:
ξ100 meV = 0.57. These values of ξ resemble the experimentally
determined spin-current transmissivities in Pt-based magnetic
bilayer systems [55].

Computing the electric conductivities based on the same
formalism as used for SOT and ISOT, we obtain σ 25 meV

xx =
1.26 × 107 S/m and σ 100 meV

xx = 0.34 × 107 S/m. From these
conductivities and the spin currents at the center of Pt, which
are given by qeven

yx (L = Pt11), we obtain the following SHE
angles: tan γ 25 meV

SHE = 0.029 and tan γ 100 meV
SHE = 0.109. The SHE

angle increases thus by a factor of 3.8 as � is increased from
25 to 100 meV. This increase of the SHE angle with increasing
disorder is expected for the intrinsic SHE because the intrinsic
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FIG. 2. (Color online) Diamonds: linear-response coefficients
qeven

yx (z) of the layer-resolved spin current for � = 25 meV (upper
graph) and � = 100 meV (lower graph). Circles: linear-response
coefficients qeven

yx (z) but with the mechanical force switched off for
layers Pt1 through Pt12. Solid lines: exponential fits according to
Eqs. (112), (113), (115), and (114).

SHE conductivity σ
y
zx [see Eq. (75)] depends only weakly on

disorder, while the normal conductivity σxx decreases with
disorder. Indeed, the increase of the SHE angle by the factor
of 3.8 is well explained by the ratio σ 25 meV

xx /σ 100 meV
xx = 3.7.

At � = 100 meV, the line of blue diamonds illustrating
qeven

yx (z) in Fig. 2 is constant in the central region between Pt5
and Pt15 because the primary spin current generated by SHE
is constant in this region and because secondary spin currents
arising from the reflections of spin current at the surfaces and
interfaces decay strongly spatially and therefore do not reach
the central region between Pt5 and Pt15. One reason for the
suppression of the spin-current profile in the region between
Pt1 and Pt5 and in the region between Pt15 and Pt20 is the
interference of the primary spin current from the SHE with
secondary spin current reflected, respectively, from the surface
and the interface. Additionally, as discussed in Sec. III B, we
expect that the primary spin current generated by the SHE
is itself dependent on position in these two regions and not
constant as in the central region. In particular, for the higher
broadening of � = 100 meV the spin-current profiles from
our ab initio calculations shown in Fig. 2 exhibit exponential
behavior in the regions Pt1 through Pt5 and in the regions Pt15
through Pt20. At � = 100 meV, the spin current in the region
between Pt12 and Co1 is well described by the exponential fit

qeven
yx (z) = [0.97 − 0.35e(z−zPt20)/λ100 meV

SOT,3
]
ea0, (112)

where zPt20 is the z coordinate of layer Pt20 and λ100 meV
SOT,3 =

0.46 nm. In the region from Pt1 to Pt10, the spin current is
approximately given by

qeven
yx (z) = [0.92 − 0.63e−(z−zPt1)/λ100 meV

SOT,4
]
ea0 (113)

with λ100 meV
SOT,4 = 0.32 nm. At the smaller broadening of � =

25 meV, we find λ25 meV
SOT,4 = 0.15 nm, but due to oscillations the

first-principles data are less well described by the exponential
fit.

The length λ100 meV
SOT,4 describes the decay of spin current

close to the vacuum boundary at Pt1, while the length λ100 meV
SOT,3

describes the decay of spin current close to the Co layer.

In order to investigate whether λ100 meV
SOT,4 and λ100 meV

SOT,3 simply
describe the decay of secondary reflected spin current or
whether they additionally exhibit a modification due to a
potential position dependence of the primary spin current, we
divide the Pt layer into two regions: In the atomic layers Pt1
through Pt12 we switch off the mechanical force −eE that
the electrons would otherwise experience due to the applied
electric field E. Only the atomic layers Pt13 through Co3
are subject to the mechanical force −eE in this modified
calculation, which is based on Eq. (102). Thus, only Pt13
through Pt20 generate sizable SHE spin current (SHE in Co
is small). The corresponding linear-response coefficients are
shown in Fig. 2 as circles for two values of broadening, � = 25
and 100 meV. Switching off the mechanical force significantly
perturbs the spin-current profile in the region Pt1 through Pt14
while from Pt15 onwards, the two spin-current profiles merge.
Approaching the region with mechanical force switched off,
i.e., approaching Pt12, the spin current (red circles in Fig. 2)
in region Pt13 to Pt17 is suppressed according to

qeven
yx (z) = [0.84 − 0.52e−(z−zPt12)/λ100 meV

SOT,5
]
ea0, (114)

where λ100 meV
SOT,5 = 0.31 nm. We find a slight � dependence:

λ25 meV
SOT,5 = 0.28 nm. In the region from Pt1 through Pt12, the

spin current is well described by

qeven
yx (z) = 0.33e(z−zPt12)/λ100 meV

SOT,2 ea0, (115)

with λ100 meV
SOT,2 = 0.85 nm. At � = 25 meV, the spin-current

profile in the region Pt1 through Pt14 cannot be described well
by an exponential fit.

Comparing the lengths obtained from the exponential fits
in Eqs. (112), (113), (115), and (114), we find that λ100 meV

SOT,2

is substantially larger than the other three lengths: λ100 meV
SOT,2 >

λ100 meV
SOT,3 ≈ λ100 meV

SOT,4 ≈ λ100 meV
SOT,5 . The length λ100 meV

SOT,2 describes
the decay of spin current in Pt in a region of space where no spin
current is generated (because the mechanical force is switched
off in the regions Pt1 through Pt12). This spin current, which
is injected into the regions Pt1–Pt12, originates only from
the SHE in the regions Pt13–Pt20. In contrast, the lengths
λ100 meV

SOT,3 , λ100 meV
SOT,4 , and λ100 meV

SOT,5 describe the suppression of the
total spin current close to interfaces and surfaces. The total
spin current is the sum of spin current generated by SHE and
spin current from the reflection at interfaces and surfaces. This
reflected spin current is expected to be described by λ100 meV

SOT,2 .
Our finding that λ100 meV

SOT,3 , λ100 meV
SOT,4 , and λ100 meV

SOT,5 are all much
smaller than λ100 meV

SOT,2 can only be explained if we assume that
the primary spin current generated by SHE is itself modified
close to surfaces and interfaces.

In Fig. 3, we show the torkance as a function of the region
where the mechanical force is set to zero. If the mechanical
force is switched off in all Pt layers and only active in the Co
layers (data points at L = Co1), teven

yx is very small because
the even torque arises dominantly from the SHE in Pt which is
switched off when the mechanical force is set to zero. When
the mechanical force is set to zero in the region from Pt1
through layer L − 1, the torkance is well described by the fit

teven
yx (z) = [0.65 − 0.68e−(zCo1 −z)/λ25 meV

SOT,1
]
ea0, (116)
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FIG. 3. (Color online) Triangles: torkances for broadenings of
� = 25 meV (upper graph) and � = 100 meV (lower graph). For
a given layer L (L is specified on the horizontal axis), the mechanical
force is switched off in the region from Pt1 through L − 1 according
to Eq. (102) and the resulting total torkance is shown by a blue
triangle. Solid lines: exponential fits according to Eq. (116).

where λ25 meV
SOT,1 = 0.76 nm. We find a weak � dependence:

λ100 meV
SOT,1 = 0.71 nm. At � = 100 meV, the spin current

generated in a given atomic layer of Pt decays on the length
scale of λ100 meV

SOT,2 . Therefore, the SHE from layers L that are
further away from the Co layer than λ100 meV

SOT,2 cannot contribute
to teven

yx . Thus, we expect λ100 meV
SOT,1 ≈ λ100 meV

SOT,2 , which is indeed
the case.

One main conclusion of this section is that for a sufficiently
large broadening � = 100 meV, the ab initio spin-current
profiles behave as expected from diffusive spin-transport
models. In particular, at � = 100 meV, the decay lengths of
spin current extracted in various ways are found to be similar,
namely, λ100 meV

SOT,1 = 0.71 nm and λ100 meV
SOT,2 = 0.85 nm. Similarly

short but slightly longer length scales of roughly 1.5 nm have
been observed in Pt in recent experiments [22,38,63,64]. A
second conclusion from this section is that close to interfaces
and surfaces, the SHE conductivity is position dependent.
Therefore, close to interfaces and surfaces, the spin-current
profiles do not decay on the scale of λ100 meV

SOT,1 ≈ λ100 meV
SOT,2 but

instead significantly faster, namely, according to λ100 meV
SOT,3 ≈

λ100 meV
SOT,4 ≈ λ100 meV

SOT,5 ≈ 0.3 nm.

C. Even ISOT

When the magnetization precesses in a circular orbit around
the z axis in the small-cone limit, the current density

J even
x, 25 meV(t)

ω
= − 87

pAs

m
sin(θ ) sin(ωt),

J even
x, 100 meV(t)

ω
= − 68

pAs

m
sin(θ ) sin(ωt)

(117)

is induced due to the even torkance teven
yx according to Eq. (68),

where we used A0 = teven
yx and A = 23.8 a2

0 .
As discussed in Sec. III B, the ISOT current I even

x =
J even

x Ly arises dominantly from the combination of spin
pumping and ISHE. Since the spin current pumped into Pt
decays, the layer-resolved ISOT current I even

x (L) is expected
to reflect this spatial decay. Replacing vα in Eq. (99) by vα(L)
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FIG. 4. (Color online) Layer-resolved ISOT current I even
x (L) in-

duced in Co(3)/Pt(20) by magnetization dynamics. The total ISOT
current is I even

x =∑L I even
x (L). The relative contributions of the

layers, i.e., I even
x (L)/I even

x , is shown for two values of broadening, �

= 25 and 100 meV. Solid lines: exponential fit according to Eq. (118).

[Eq. (100)] yields the layer-resolved ISOT current I even
x (L)

shown in Fig. 4. Inside the Pt layer, I even
x (L) is well described

by an exponential function

I even
x (z) = I even

x (zPt20 )e(z−zPt20 )/λISOT,1 , (118)

where zPt20 is the z coordinate of layer Pt20. Fitting Eq. (118)
to the I even

x (L) profile obtained from first principles yields
λ25 meV

ISOT,1 = 0.58 nm and λ100 meV
ISOT,1 = 0.70 nm.

In order to compare the spatial profile of the layer-resolved
ISOT current I even

x (L) with the spatial profile of the pumped
spin current Qy(L,t) given by Eq. (105), we calculate the
coefficients wyy (L), which are defined in Eq. (108). wyy (L)
describes spin current in phase with I even

x and with spin
pointing in the y direction. Within Pt, the L dependence of
wyy (L), shown in Fig. 5, is approximately given by

wyy (z) = 0.087�e(z−zPt20)/λ100 meV
ISOT,2 , (119)

where λ100 meV
ISOT,2 = 0.89 nm. At smaller broadening � = 25 meV,

the pumped spin current reaches the vacuum boundary at
Pt1 and the resulting reflection of spin current needs to be
considered according to Eq. (86). When λ25 meV

ISOT,2 is much larger
than the thickness of Pt, the sinh function can be approximated:

wyy (z) ∝
sinh z−zPt1

λ25 meV
ISOT,2

sinh zPt20−zPt1

λ25 meV
ISOT,2

≈ z − zPt1

zPt20 − zPt1

, (120)

which explains the roughly linear profile of wyy (L) at � =
25 meV.

The ISOT currents shown in Fig. 4 decay faster in Pt than
the spin currents in Fig. 5. Thus, Eq. (80), which predicts spin
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FIG. 5. (Color online) Layer-resolved spin current induced by
magnetization dynamics for two values of broadening, � = 25 and
100 meV. The coefficient wyy describes spin current flowing in z

direction with spin pointing in y direction and in phase with I even
x (t).

Solid line: fit according to Eq. (119).
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current and ISHE current to be proportional, is violated, in
particular at � = 25 meV. However, Eq. (80) is approximately
satisfied at � = 100 meV, where both the ISOT current and
the pumped spin current decay exponentially with λ100 meV

ISOT,1 ≈
λ100 meV

ISOT,2 . The small difference λ100 meV
ISOT,2 − λ100 meV

ISOT,1 = 0.19 nm
amounts to less than one Pt interlayer distance. Additionally,
this spin-current decay length λ100 meV

ISOT,1 ≈ λ100 meV
ISOT,2 is very

similar to the one extracted in the previous subsection, i.e.,
λ100 meV

ISOT,1 ≈ λ100 meV
ISOT,2 ≈ λ100 meV

SOT,1 ≈ λ100 meV
SOT,2 . This consistency

between the various methods used to extract the spin-current
decay length implies that the model of Sec. III B provides a
satisfactory description at sufficiently high broadening �.

In Eq. (79), the ISHE angle tan γISHE is proportional to the
quotient of ISOT current density and pumped spin-current
density. The different decay of ISOT current and pumped
spin current described by λ100 meV

ISOT,1 and λ100 meV
ISOT,2 , respectively,

therefore implies that tan γISHE is not constant but dependent
on position. For large broadening, we obtain tan γ 100 meV

ISHE (L =
Pt20) = 0.16 and tan γ 100 meV

ISHE (L = Pt11) = 0.077, while for
small broadening we obtain tan γ 25 meV

ISHE (L = Pt20) = 0.27 and
tan γ 25 meV

ISHE (L = Pt11) = 0.031. Even for large broadening,
the ISHE angle is significantly enhanced at the interface. The
ISHE angles at the center of Pt, i.e., tan γ 100 meV

ISHE (L = Pt11)
and tan γ 25 meV

ISHE (L = Pt11), are similar to the SHE angles
determined in the previous section from the spin current
in the center of Pt: tan γ 100 meV

SHE (L = Pt11) = 0.109 and
tan γ 25 meV

SHE (L = Pt11) = 0.029.
From Eq. (109), we obtain the spin-mixing conductance

Reg↑↓
25 meV = 1.8 × 1019 m−2 and for � = 100 meV a slightly

larger value of Reg↑↓
100 meV = 2.0 × 1019 m−2. Equation (84)

provides an alternative way to extract the ISHE angle:

tan γ̄ 100 meV
ISHE = 2πteven

yx

eAReg↑↓
100 meVλ100 meV

ISOT,2

= 0.15, (121)

where the in-plane area of the unit cell is A = 23.8 a2
0 and

the parameters λ100 meV
ISOT,2 = 0.89 nm and teven

yx, 100 meV = 0.53 ea0

have been discussed above. In contrast to the layer-resolved
ISHE angles, Eq. (121) describes an average over all those Pt
layers that lie within the distance of λ100 meV

ISOT,2 from the Co layer.
The result of tan γ̄ 100 meV

ISHE = 0.15 is very similar to the layer-
resolved ISHE angle close to the interface of tan γ 100 meV

ISHE (L =
Pt20) = 0.16.

Finally, we can also put Eq. (85) to a test using the
parameters determined above:

λ100 meV
sd = ξ100 meV�πσ 100 meV

xx

e2Reg↑↓
100 meV

= 1.25 nm. (122)

While λ100 meV
sd is larger than λ100 meV

ISOT,2 , the agreement be-
tween these two values is still satisfactory, corroborating
the conclusion that the model of Sec. III B provides a
satisfactory description for sufficiently large broadening. For
small broadening, Eq. (85) yields λ25 meV

sd = 6.7 nm, which
is thicker than the Pt layer in our calculation and therefore
justifies the linear approximation in Eq. (120).
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FIG. 6. (Color online) Triangles: torkances for broadenings of
� = 25 meV (upper graph) and � = 100 meV (lower graph). For
a given layer L (L is specified on the horizontal axis), the mechanical
force is switched off in the region from Pt1 through L − 1 according
to Eq. (102) and the resulting total torkance is shown by a blue
triangle. Solid lines serve as guide to the eye.

D. Odd SOT

We obtain torkances per unit cell of todd
xx,25 meV = 0.17 ea0

and todd
xx,100 meV = 0.15 ea0 at broadenings of � = 25 and

100 meV, respectively. Dividing these torkances by the
magnetic moment per unit cell of μ = 5.78 μB we calculate
the effective fields per applied electric field of todd

xx,25 meV/μ =
0.0027 mT cm/V and todd

xx,100 meV/μ = 0.0024 mT cm/V.
In Fig. 6, we show the odd torkance as a function of the

region with mechanical force switched off. If the mechanical
force is switched off for Pt1 through Pt20 such that only the
layers Co1, Co2, and Co3 are subject to it (see the data points
at L = Co1 in the figure), the corresponding odd torque is not
very different from the one with the mechanical force switched
on everywhere (see the data points at L = Pt1 in the figure). If
the mechanical force is applied only to layers Co2 and Co3 (see
data points at L = Co2 in the figure), the resulting torkance is
much smaller compared to the situation where all three Co lay-
ers are subject to it. Thus, the perturbation of the Co1 layer by
the mechanical force is essential for the odd SOT in this system.

To produce a sizable odd torque in Co(3)/Pt(20), it is
therefore not crucial to switch on the mechanical force in
the Pt layers but it suffices to apply this perturbation to the
Co states. As a combined effect of broken inversion symmetry
and SOI, the spin of a given wave function |�kn〉 is correlated
with the velocity vknn [65]. As a result, the nonequilibrium
spin density induced by an applied electric field combined
with the exchange interaction gives rise to the odd component
of the torkance [9,10,66]. Application of the mechanical force
to Co, i.e., perturbation of the system via the velocity operator
within the Co layer, produces therefore the dominant part of
nonequilibrium spin density from which the odd torque arises
in Co(3)/Pt(20). This stands in marked contrast to the even
torque in this system, which is mainly driven by SHE from Pt
and thus very small if the mechanical force is turned off in all
Pt layers, as shown in Fig. 3.

In Fig. 7, the layer-resolved odd torkance and the linear-
response coefficient of spin flux into layer L, i.e.,

�qodd
xx (L) = qodd

xx (L) − qodd
xx (L + 1), (123)
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FIG. 7. (Color online) Triangles: layer-resolved odd torkance
todd
xx for broadenings of � = 25 meV (upper graph) and � = 100 meV

(lower graph). Circles: linear-response coefficient of the layer-
resolved spin flux �qodd

xx [Eq. (123)]. Solid lines serve as guide to
the eye.

are shown for two values of broadening, � = 25 and 100 meV.
For the layers Co1 through Co3, the layer-resolved torkances
coincide approximately with the spin fluxes as in the case of
the even torque. This approximate agreement between odd
spin fluxes and odd torques is not generally found in bilayer
systems, for example, they differ considerably in O/Co/Pt and
Al/Co/Pt [31]. For � = 100 meV, the magnetization of layer
Pt20 experiences a torkance of 0.085ea0. At the same time,
there is a spin flux out of layer Pt20 characterized by the
coefficient −�qodd

xx (L = Pt20) = 0.087ea0. This spin flux is
transferred to the Co layer where it exerts a torque on the Co
magnetization. The sum of torkance and spin-flux coefficient
of Pt20 amounts to 0.172ea0 and approximately accounts
for the total odd torkance of 0.15ea0 at � = 100 meV. The
angular momentum that gives rise to the odd torque on the
magnetization is thus picked up from the lattice at Pt20 and
roughly 50% of it is directly transferred to the magnetization
of the Pt20 layer while the rest is transported to the Co layer via
spin current. Above, we have shown that the mechanical force
on the Co1 layer is crucial to produce a sizable odd torque.
Since the pickup of angular momentum from the lattice by
the spin system happens in Pt20, the hybridization of the Co1
states with the Pt20 states is thus essential.

E. Odd ISOT

According to Eq. (68), the current density

J odd
x,25 meV(t)

ω
= 22

pAs

m
sin(θ ) cos(ωt),

J odd
x,100 meV(t)

ω
= 19

pAs

m
sin(θ ) cos(ωt)

(124)

is induced due to todd
xx when the magnetization precesses around

the z axis in the small-cone limit. Here, we used C0 = todd
xx and

A = 23.8 a2
0 . This contribution from todd

xx is thus −90◦ phase
shifted with respect to the contribution from teven

yx given in
Eq. (117), i.e., it lags behind by a quarter period.

Since the mechanical force on the Co1 layer is crucial for
the odd SOT according to Fig. 6, we expect that the odd ISOT
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FIG. 8. (Color online) Layer-resolved ISOT current I odd
x (L) in-

duced in Co(3)/Pt(20) by magnetization dynamics. The total ISOT
current is I odd

x =∑L I odd
x (L). The relative contributions of the layers,

i.e., I odd
x (L)/I odd

x , is shown for two values of broadening, � = 25 meV
(squares) and � = 100 meV (circles). Solid lines serve as guide to
the eye.

current induced by magnetization dynamics flows mainly in
the Co1 layer because of the reciprocity between ISOT and
SOT. This is indeed the case, as Fig. 8 shows. In particular,
at � = 100 meV, the currents flowing in Co2, Co3, and
the Pt layer are almost negligible. At the smaller broadening
� = 25 meV, the induced ISOT currents in Co2, Co3, and Pt
are larger, especially in the Co2 and Co3 layers, but the Co1
contribution to the ISOT current still strongly dominates.

V. SUMMARY

SOT and ISOT are reciprocal effects. Both of them can be
expressed conveniently in terms of the torkance tensor t(M̂),
which depends on the magnetization direction M̂ . In the case of
the SOT phenomenon, the torque T (M̂) on the magnetization
due to the application of an electric field E is given by T (M̂) =
t(M̂)E. If M̂ changes as a function of time, the reciprocal
effect, the ISOT, can be observed. It consists in the generation
of a current density j (t) = {t( − M̂(t))}T[M̂(t) × d M̂(t)

dt
]/V ,

where V is the unit-cell volume. Magnetization-dynamics-
driven effects, such as ISOT and Gilbert damping, can be
consistently derived in time-dependent perturbation theory
using a time-dependent exchange field. The same expressions
are obtained by rewriting general many-body susceptibilities
in terms of the Kohn-Sham susceptibilities. On the basis of
the SOT-ISOT reciprocity relations and recent experimental
results for the SOT in bilayer systems, we predict the angular
dependence of the FMR-driven ISOT in bilayers. We find that
measurements of the dc voltage associated with the FMR-
driven ISOT are insufficient to determine t(M̂) in general
and that additionally the ac voltage needs to be measured
phase sensitively to determine t(M̂) completely. Within the
Kubo linear-response formalism, we investigate SOTs and
ISOTs in Co/Pt(111) magnetic bilayers using the electronic
structure provided from first-principles density-functional
theory. Magnetization-dynamics-induced charge currents and
spin currents are resolved on the atomic scale to extract
model parameters and to expose the mechanisms underlying
the ISOT. Likewise, the spin currents accompanying the SOT
are resolved on the atomic scale for the same purposes. It is
found that SHE and ISHE are modified close to interfaces and
surfaces. Comparison of the various currents accompanying
SOT on the one hand and ISOT on the other hand highlights
the reciprocity of the two phenomena on the microscopic scale.

064415-16



DIRECT AND INVERSE SPIN-ORBIT TORQUES PHYSICAL REVIEW B 92, 064415 (2015)

ACKNOWLEDGMENTS

We gratefully acknowledge computing time on
the supercomputers JUQUEEN and JUROPA at
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APPENDIX: MAGNETOCRYSTALLINE ANISOTROPY
AND THE STATIC TORQUE-TORQUE

CORRELATION FUNCTION

The torque due to the field HMAE [Eq. (30)] is given by

δT MAE = μ0MV M̂ × HMAE

= −MV

[
�̄xc + GR

T T (�ω = 0,M̂)

MV �

]
M̂ × δM̂,

(A1)

where we used Eq. (48) to express χ in terms of the torque-
torque correlation function GR

T T . Equation (A1) can be related
easily to anisotropy constants. For example, in the case of
uniaxial anisotropy, i.e., E(θ ) = V K1 sin2 θ , one obtains

K1 = M

2

[
�̄xc +

GR
TyTy

(�ω = 0,M̂ = êz)

MV �

]
. (A2)

In the following, we show that Eq. (A1), which was obtained
within the many-electron response formalism of Sec. II C,
can also be obtained directly from the torque exerted on
the magnetization by the Kohn-Sham electrons. Denoting the
Kohn-Sham wave functions by |ψkn〉 and the occupancies by
fkn we can write

δT MAE = −δ

{
1

N
∑
kn

fkn〈ψkn|T |ψkn〉
}

= − 1

N
∑
kn

fkn〈ψkn|δT |ψkn〉

− 1

N
∑
kn

δfkn〈ψkn|T |ψkn〉

− 2 Re
1

N
∑
kn

fkn〈ψkn|T δ|ψkn〉. (A3)

From δT = m × δM̂�xc we obtain for the first term

− 1

N
∑
kn

fkn〈ψkn|δT |ψkn〉 = −MV �̄xc M̂ × δM̂. (A4)

Using for the remaining terms

δ|ψkn〉 =
∑
m�=n

|ψkm〉〈ψkm|T |ψkn〉
Ekn − Ekm

· (M̂ × δM̂) (A5)

and

δfkn = −δ(EF − Ekn)〈ψkn|T |ψkn〉 · (M̂ × δM̂) (A6)

and

GR
TαTβ

= 2�

N
∑
kn

∑
m�=n

fknRe
〈ψkn|Tα|ψkm〉〈ψkm|Tβ |ψkn〉

Ekn − Ekm

− �

N
∑
kn

δ(EF − Ekn)〈ψkn|Tα|ψkn〉〈ψkn|Tβ |ψkn〉,
(A7)

one can easily show that Eqs. (A1) and (A3) agree.
The Kohn-Sham Hamiltonian can be decomposed as

H (r) = HKIN + V (r) − m · M̂�xc(r) + HSOI, (A8)

where HKIN describes the kinetic energy, V (r) is the spin-
independent part of the effective potential, and HSOI describes
the spin-orbit interaction. Using [HKIN,σβ] = 0, [V (r),σβ] =
0, and [σα,σβ] = 2iεαβγ σγ , one can show the following
identity for the torque operator:

Tβ = i

2
[H − HSOI,σβ]. (A9)

Substituting Tβ in Eq. (A7) by Eq. (A9) and inserting the
resulting expression for GR

TαTβ
into Eq. (A1) we obtain

δT MAE

= − 1

N
∑
knβ

(M̂ × δM̂)β

×
⎧⎨
⎩fknIm

∑
m�=n

〈ψkn|T |ψkm〉〈ψkm|[HSOI,σβ]|ψkn〉
Ekn − Ekm

+ i

2
δ(EF − Ekn)〈ψkn|T |ψkn〉〈ψkn|[HSOI,σβ]|ψkn〉

}
.

(A10)

Equation (A10) is well suited for the calculation of the
magnetocrystalline anisotropy within Kohn-Sham density-
functional-theory codes. In contrast, the direct application
of Eq. (A1) in practice would suffer from the following
disadvantage: Since the magnetocrystalline anisotropy energy
is usually much smaller than the average exchange field �̄xc,
one would need to calculate both �̄xc as well as the torque-
torque correlation function GR

TαTβ
with very high precision if

one wanted to use directly Eq. (A1) for the determination of
the magnetocrystalline anisotropy.

In the absence of SOI, we have HSOI = 0 and Eq. (A9)
simplifies to Tβ = i[H,σβ]/2. Since |ψkn〉 is an eigenstate of
H it follows that 〈ψkn|Tβ |ψkn〉 = 0 and therefore the last term
in Eq. (A7) vanishes. Thus, in the absence of SOI, Eq. (A7)
can be written as

GR
TαTβ

= �

N
∑
kn

fknIm〈ψkn|Tασβ |ψkn〉. (A11)

Using σασβ = δαβ + iεαβγ σγ , one can derive Eq. (44)
from (A11).
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[45] F. Freimuth, S. Blügel, and Y. Mokrousov, J. Phys.: Condens.

Matter 26, 104202 (2014).
[46] F. Freimuth, R. Bamler, Y. Mokrousov, and A. Rosch, Phys.

Rev. B 88, 214409 (2013).
[47] H. Ebert, S. Mankovsky, D. Ködderitzsch, and P. J. Kelly, Phys.

Rev. Lett. 107, 066603 (2011).
[48] Z. Qian and G. Vignale, Phys. Rev. Lett. 88, 056404 (2002).
[49] R. R. Birss, Symmetry and Magnetism (North-Holland,

Amsterdam, 1964).
[50] I. Garate and A. MacDonald, Phys. Rev. B 79, 064403 (2009).
[51] K. Ando, T. Yoshino, and E. Saitoh, Appl. Phys. Lett. 94, 152509

(2009).
[52] M. Gradhand, D. V. Fedorov, P. Zahn, I. Mertig, Y. Otani, Y.

Niimi, L. Vila, and A. Fert, SPIN 02, 1250010 (2012).
[53] W. Zhang, M. B. Jungfleisch, W. Jiang, Y. Liu, J. E. Pearson,

S. G. E. t. Velthuis, A. Hoffmann, F. Freimuth, and Y.
Mokrousov, Phys. Rev. B 91, 115316 (2015).

[54] A. Vedyayev, N. Ryzhanova, N. Strelkov, and B. Dieny, Phys.
Rev. Lett. 110, 247204 (2013).

[55] T. Nan, S. Emori, C. T. Boone, X. Wang, T. M. Oxholm, J. G.
Jones, B. M. Howe, G. J. Brown, and N. X. Sun, Phys. Rev. B
91, 214416 (2015).

[56] W. Zhang, W. Han, X. Jiang, S.-H. Yang, and S. S. P. Parkin,
Nat. Phys. 11, 496 (2015).
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