001     203254
005     20210129220327.0
024 7 _ |a 10.1016/j.agee.2015.07.010
|2 doi
024 7 _ |a 0167-8809
|2 ISSN
024 7 _ |a 1873-2305
|2 ISSN
024 7 _ |a WOS:000361261100027
|2 WOS
024 7 _ |a altmetric:5938549
|2 altmetric
024 7 _ |a pmid:01678809
|2 pmid
037 _ _ |a FZJ-2015-05235
041 _ _ |a English
082 _ _ |a 330
100 1 _ |0 P:(DE-Juel1)166012
|a Zhou, Minghua
|b 0
|e Corresponding author
245 _ _ |a Nitrous oxide and methane emissions from a subtropical rice–rapeseed rotation system in China: A 3-year field case study
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1439795518_7252
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Fertilizer nitrogen (N) application has been shown to impact both methane (CH4) and nitrous oxide (N2O) emissions from rice-based crop systems, yet the responses of CH4 and N2O fluxes to N fertilizer applications in subtropical rice–rapeseed rotation systems are not well documented. A three-year field experiment was conducted to simultaneously measure the fluxes of CH4 and N2O from a subtropical rice–rapeseed rotation system under three N fertilization treatments (control with no N fertilizer addition [CK], optimized N fertilizer management practice in accordance with the recommended N fertilizer application rate of 150 kg N ha−1 season−1 [OP], local farmers common N fertilizer management practice with 250 kg N ha−1 season−1 [CP]) in southwestern China. Results showed great intra- and inter-annual variations in CH4 and N2O emissions along with the temporal variations of environmental conditions, emphasizing the necessity of multi-year measurements to achieve representative estimates. Nitrogen fertilization tended to increase N2O emissions and to inhibit CH4 emissions. The direct N2O emission factors (EFd) for the rice systems (mean: 0.99%) were higher than those for the rapeseed systems (mean: 0.71%). In addition, the rice-growing season dominated annual CH4 emissions (>97%), which on average represented 87% of the annual total global warming potential (GWP) of CH4 and N2O emissions across experimental treatments and years. Linking total GWP of CH4 and N2O emissions with grain yields, the average annual yield-scaled GWP for the control (1467 kg CO2-eq Mg−1 grain) was significantly higher than for the OP (700 kg CO2-eq Mg−1 grain) and CP (682 kg CO2-eq Mg−1 grain) treatments (P < 0.05). Given the comparable area- and yield-scaled GWP between the CP and OP treatments, the OP treatment reduced local farmers’ common N fertilizer application rate by 40% and tended to maintain crop grain yields, however it also reduced N surplus and off-site N losses in the subtropical rice–rapeseed rotation systems of southwestern China.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Zhu, Bo
|b 1
700 1 _ |0 P:(DE-Juel1)142357
|a Brüggemann, Nicolas
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Wang, Xiaoguo
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Zheng, Xunhua
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Butterbach-Bahl, Klaus
|b 5
773 _ _ |0 PERI:(DE-600)2013743-6
|a 10.1016/j.agee.2015.07.010
|g Vol. 212, p. 297 - 309
|p 297 - 309
|t Agriculture, ecosystems & environment
|v 212
|x 0167-8809
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/203254/files/1-s2.0-S0167880915300244-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203254/files/1-s2.0-S0167880915300244-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203254/files/1-s2.0-S0167880915300244-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203254/files/1-s2.0-S0167880915300244-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203254/files/1-s2.0-S0167880915300244-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203254/files/1-s2.0-S0167880915300244-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203254
|p VDB
|p VDB:Earth_Environment
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166012
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)142357
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b AGR ECOSYST ENVIRON : 2013
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21