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Abstract. Large weighing lysimeters are currently the most

precise method to directly measure all components of the

terrestrial water balance in parallel via the built-in weighing

system. As lysimeters are exposed to several external forces

such as management practices or wind influencing the weigh-

ing data, the calculated fluxes of precipitation and evapotran-

spiration can be altered considerably without having applied

appropriate corrections to the raw data. Therefore, adequate

filtering schemes for obtaining most accurate estimates of

the water balance components are required. In this study, we

use data from the TERENO (TERrestrial ENvironmental Ob-

servatories) SoilCan research site in Bad Lauchstädt to de-

velop a comprehensive filtering procedure for high-precision

lysimeter data, which is designed to deal with various kinds

of possible errors starting from the elimination of large dis-

turbances in the raw data resulting e.g., from management

practices all the way to the reduction of noise caused e.g.,

by moderate wind. Furthermore, we analyze the influence of

averaging times and thresholds required by some of the filter-

ing steps on the calculated water balance and investigate the

ability of two adaptive filtering methods (the adaptive win-

dow and adaptive threshold filter (AWAT filter; Peters et al.,

2014), and a new synchro filter applicable to the data from a

set of several lysimeters) to further reduce the filtering error.

Finally, we take advantage of the data sets of all 18 lysimeters

running in parallel at the Bad Lauchstädt site to evaluate the

performance and accuracy of the proposed filtering scheme.

For the tested time interval of 2 months, we show that the

estimation of the water balance with high temporal resolu-

tion and good accuracy is possible. The filtering code can be

downloaded from the journal website as Supplement to this

publication.

1 Introduction

Large weighing lysimeters are currently the only method for

directly measuring all components of the terrestrial water

balance (Goss and Ehlers, 2009; Seneviratne et al., 2012)

including precipitation, actual evapotranspiration (in the fol-

lowing referred to as evapotranspiration), soil water storage

and deep drainage (e.g., van Bavel, 1961; Howell et al., 1991;

Yang et al., 2000; Peters et al., 2014). In particular, for deter-

mining actual evapo(transpi)ration, weighing lysimeters are

the most accurate and reliable field method and the data are

regarded as standard for evaporation measurements which

are used to validate data from other measurement techniques

(Shuttleworth, 2012, p. 91). Despite the rather high costs for
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installation and maintenance, and the considerable effort for

data processing, this is also a reason why numerous lysimeter

facilities exist worldwide. For example, Lanthaler and Fank

(2005) carried out a survey about lysimeter stations in Europe

and found more than 2400 lysimeter vessels, of which about

400 were weighable. Estimates of water balance components

from this type of lysimeters have been used in numerous

studies in agriculture, hydrology and climate sciences, e.g.,

for estimating crop water use efficiency (e.g., Young et al.,

1996), groundwater recharge (e.g., Yang et al., 2000), or for

modeling water and/or solute dynamics in soils (e.g., Loos

et al., 2007). In recent years, even catchment- or regional-

to continental-scale hydroclimatic processes have been an-

alyzed with the help of lysimeter data such as the 2003

drought event in Europe (Seneviratne et al., 2012) or the eval-

uation of main drivers of evapotranspiration at the continen-

tal scale (Teuling et al., 2009). In these studies, the lysimeter

measurements are used as valuable reference data for evap-

otranspiration. Furthermore, data from weighable lysimeters

have been used for comparing evapotranspiration and precip-

itation estimates with other measurement techniques such as

eddy covariance data and rain gauges (e.g., Evett et al., 2012;

Gebler et al., 2015).

Technically, high-precision weighing systems make mod-

ern lysimeters an ideal and very precise measurement tool for

determining the different water balance components (Fank

and von Unold, 2007) and the high temporal resolution of

the data allows for a detailed separation of precipitation and

evapotranspiration fluxes across the soil–plant–atmosphere

interface (e.g., Fank, 2013; Schrader et al., 2013; Peters et al.,

2014). Nevertheless, the derivation of accurate fluxes re-

quires an adequate processing of the raw data prior to the

water balance calculations. This is because, although the de-

termination of fluxes from the weighing data is straightfor-

ward, precipitation (P ) and evapotranspiration (ET) have to

be separated in an indirect way. Positive fluxes at the soil–

atmosphere interface are interpreted as P and negative fluxes

as ET, assuming that these processes do not occur simulta-

neously. This algorithmic separation can lead to large errors

in the calculated individual fluxes, if external alterations of

the mass data and noise-induced oscillations are not filtered

from the data and therefore are interpreted as P or ET fluxes.

Besides internal weighing system errors, external errors are,

for example, vibrations induced by wind (e.g., Howell et al.,

1995), mass changes due to soil management, animals like

mice or birds stepping on the lysimeter, or influences due to

sampling from the seepage water reservoir.

There already exist a number of studies dealing with filter-

ing procedures for lysimeter mass data. A common method

to remove the noise is a smoothing of the data with a static

or a moving mean. Although widely applied in the literature,

the effects of smoothing and averaging on the accuracy of the

estimated fluxes are rarely discussed. For example, Meissner

et al. (2007) investigated the ability of lysimeters to mea-

sure small changes in water storage considered as dew and

rime with a temporal resolution of 1 h. In contrast, Nolz et al.

(2013a) report wind influences on the weighing signal and

suggest an averaging time of 30 min. In their recent studies

(Nolz et al., 2013b, 2014), smoothing is done with a natural

cubic spline and manually adjusted smoothing factors. While

an enlargement of the smoothing time window leads to a re-

duction of noise effects (noise error), the temporal resolution

is reduced and an increasing part of the precipitation is lost

due to a mixing with evapotranspiration (mixing error). Con-

sidering this issue, Vaughan et al. (2007) present a filtering

method that is based on the fitting of the mass curve. How-

ever, their investigation is based on a data set with a tem-

poral resolution of 1 h and the process details are further re-

duced by the fitting algorithm. In Vaughan and Ayars (2009),

data smoothing is done with a Savitzky–Golay filter operat-

ing over a time period of a minimum of 1 h.

The first steps in investigating filtering schemes for eval-

uating temporally highly resolved components of the water

balance on the basis of synthetic and field data were pre-

sented by Schrader et al. (2013) discussing the issue of falsi-

fying fluxes by large averaging times. Fank (2013) used a 1-

year high-resolution time series of field data from the hydro-

lysimeter at the Wagna research station to estimate precip-

itation and evapotranspiration. He showed the influence of

different averaging times on the resulting water balance es-

timates and was the first to recommend temporally adaptive

thresholds for the filtering of measurement noise from the

data. Recently, Peters et al. (2014) proposed a filtering algo-

rithm, the so-called adaptive window and adaptive threshold

filter, AWAT) for lysimeter weighing data to obtain tempo-

rally higher resolved data by adapting the used filtering pa-

rameters according to the signal strength and successfully ap-

plied this filter to a 4.5-month time series of field data from

the lysimeter station Marienfelde.

The objective of this study is to first develop a compre-

hensive filtering procedure for high-precision lysimeter data,

which is designed to deal with various kinds of possible er-

rors starting from the elimination of large disturbances in the

raw data resulting e.g., from management practices all the

way to the reduction of noise caused e.g., by moderate wind.

Second, we analyze the influence of averaging times and

thresholds required by some of the filtering steps on the cal-

culated water balance and investigate the ability of two adap-

tive filtering methods (the AWAT filter (Peters et al., 2014)

and a new synchro filter applicable to the data from a set of

several lysimeters) to further reduce the filtering error. Fi-

nally, we take advantage of the data sets of all 18 lysimeters

running in parallel at the TERENO (TERrestrial ENviron-

mental Observatories) SoilCan Site in Bad Lauchstädt (Pütz

et al., 2011) to evaluate the accuracy and robustness of the

proposed filtering scheme.
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2 Material and methods

2.1 Lysimeter measurements

The lysimeters used for this study are part of the TERENO

SoilCan project (Pütz et al., 2011). In the framework of

TERENO, a network of observatories has been set up to ex-

plore long-term impacts of climate and land use change on

a regional level (Bogena et al., 2006; Zacharias et al., 2011).

Following this idea, the TERENO SoilCan project comprises

a total of 126 lysimeters that are distributed over 13 sites

throughout Germany (Pütz et al., 2011).

The lysimeters of the SoilCan network are arranged in

hexagons of six lysimeters (consecutively indicated as L1,

L2, ..., L6) at one plot. Figure 1 shows a schematic draw-

ing of the lysimeter configuration. Each of the lysimeters has

a circular surface area of 1 m2 and a depth of 1.5 m. The

lysimeters are equipped with different sensors for measuring

matric potential at 10, 30, 50 and 140 cm below the ground

surface. The volumetric soil water content is measured with

TDR (time-domain reflectometry) sensors at three different

depths (10, 30, and 50 cm). Further measurements of CO2

concentration, soil heat flux and net radiation are conducted

continuously. The matric potential at the lower boundary is

controlled by a set of suction cups, such that water can be

pumped into and out of the lysimeter. An automatic pump-

ing system is used to adjust the pressure head at the lower

boundary to the value of three reference tensiometers in-

stalled in the field. The lysimeters are equipped with a weigh-

ing system that allows for a resolution of 10 g (respectively

0.01 mm) for measuring the mass of the lysimeter and of 1 g

for recording the mass of the seepage water reservoir. The

mass data we refer to as raw data or signal were internally ac-

quired at a frequency of 0.2 Hz (5 s), averaged with a moving

mean over six of these 5 s values and logged with a frequency

of one per minute.

At the research site in Bad Lauchstädt, three hexagons

(here indicated as BL1, BL2, and BL3) with a total of

18 lysimeters were set up. Two hexagons (12 lysimeters) are

cultivated with crops (BL1 and BL2). In the period of the pre-

sented data set (1 March–31 May 2013), the grown crop was

winter rape. The other 6 lysimeters are covered with grass.

For each hexagon, the soils originate from two different lo-

cations in Germany. Therefore, in Bad Lauchstädt, we can in-

vestigate data from six different soil textures from six differ-

ent locations, each location represented with a total of three

lysimeters.

2.2 Comprehensive processing scheme for

high-precision lysimeter data – basic procedure

Lysimeters are always directly exposed to environmental

conditions and therefore prone to multiple error sources. The

determination of an accurate time-resolved water balance re-

quires an adequate data processing to eliminate these influ-

Figure 1. Schematic drawing of a lysimeter (left) as used in SoilCan

attached to the central service pit (right).

ences. We propose a processing scheme that should include

five major steps (Fig. 2):

The threshold filter and the smoothing filter are described

in detail by Schrader et al. (2013) and will therefore only

be shortly addressed. To this basic scheme we added a man-

ual filter, a median filter and an oscillation threshold filter

as further components, which we consider to be essential for

the determination of temporally highly resolved fluxes us-

ing lysimeter data. It is important to conduct the filtering in

the suggested sequence. In particular, the filtering of discrete

events (filter steps 1–3) has to be done prior to the filtering

of noise (4–5). Otherwise, distinct events will be blurred by

smoothing and cannot be filtered effectively afterwards.

Apart from the first filter step (manual filter), all the filter

steps are applied to the mass data of the seepage water tank,

corresponding to the seepage water flux, as well as to the

summarized mass data of lysimeter and seepage water tank,

corresponding to the flux at the soil–atmosphere interface (P

and ET). Only the manual filter is applied to the mass data

sets of the seepage water tank and the lysimeter (before sum-

marizing it). The threshold filter is first applied to the seepage

mass data to eliminate possible spikes in the data (especially

due to automatic emptying of the seepage water tank) before

calculating the sum of lysimeter and seepage mass. In the

following subsections, we will describe and discuss each of

the individual filtering steps in detail.

2.2.1 Manual filter

After a step of pre-processing, which may include interpola-

tion or filling of missing data points if necessary, a manual

filter should be the first step in data processing. It is used

to remove defective data periods. The most common error

sources in this respect are heavy external influences affect-

ing the weighing data, which are e.g., caused by harvesting,

maintenance or measurements on the lysimeters. The influ-

ence of such forces on the weighing data can be very strong

(or hard to recognize in other manners), so that the subse-

quent filtering algorithm will not succeed in removing these

errors. It may also be feasible to automize this filtering step

by connecting the processing code to standardized field pro-
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Figure 2. Flowchart of the basic processing scheme.

tocols of the technicians and the data transfer logs of the

lysimeters, but this refers to other than mass data and is not

within the scope of this study. Another option could be to

determine heavily affected time periods by checking the au-

tomatically processed results. In the presented data set, we

exposed a manual filtering for some hours on three differ-

ent days with known maintenance and at two further periods,

where a single lysimeter showed distinct outliers in the data.

During these periods, there was no precipitation detected by

the nearby rain gauge and the weighing data were interpo-

lated to fill the measurement gaps. The effect of the manual

filter is illustrated in Fig. 3b compared to raw data (Fig. 3a).

2.2.2 Threshold filter

The threshold filter has the capability of removing strong

and short external influences from the data set. Typical er-

ror sources are mass changes during automatic emptying of

the seepage water storage tanks, humans or (heavy) animals

stepping on the lysimeter, or malfunctions in data transfer.

By defining thresholds for the maximum possible precipita-

tion, evapotranspiration and the maximum mass change in

the seepage water reservoir, the filter can detect physically

unrealistic fluxes. These data points are removed and substi-

tuted by linear interpolations. Small errors, caused by wind

effects or, for instance, by small animals, cannot properly be

removed from the data at this stage because the filter thresh-

old should not undershoot high but still reasonable water

fluxes. The description of the parameter selection is given in

Sect. 2.3.1. An example for the benefit of the threshold filter

is illustrated in Fig. 3c.

2.2.3 Median filter

While the threshold filter is a suitable tool to eliminate large

errors, influences, that lead to only small mass changes (like

small animals, wind, temperature-effects, and signal noise)

are not removed. The first step for a reduction of these er-

rors is the application of a median filter that eliminates from

the data set short-term spikes that are below the limits of the

threshold filter. The effect of the median filter is illustrated

in Fig. 3d. This filter is a very effective amendment to the

threshold filter for eliminating discrete errors. As described

in Sect. 2.3.1 we use a time window of 15 min for the calcu-

lation of the median.

2.2.4 Smoothing filter

While the previous filter steps are designed to eliminate dis-

crete errors, the last two filter steps are designed to deal with

remaining diffuse noise. The primary step in removing noise

is a smoothing filter, where different smoothing algorithms

can be used. Schrader et al. (2013) discussed the application

of a second-degree Savitzky–Golay filter (which is based on

a polynomial approximation) as well as the simple moving

average, both of which show different advantages and dis-

advantages for the application of lysimeter data. The overall

issue of such smoothing filters is the blurring of short time

effects and the mixing of ET and P . To avoid temporal dis-

tortion or even elimination of short-term events, it is advis-

able to restrict smoothing to a short time period. In our cal-

culations, we used the simple moving average with a time

window of n= 15 min, to restore a high temporal resolution

and to avoid distinct blurring effects (see Sect. 2.3.1). The

moving average calculates the arithmetic mean of the data

points in the time window from ti−(n−1)/2 to ti+(n−1)/2 for

each data point at time ti . Figure 3e gives an illustration of

the effect of the smoothing filter.

2.2.5 Oscillation threshold filter

Smoothing filters are not able to eliminate all fluctuations,

especially when they are limited to short time windows to

retain a high temporal resolution and to preserve short-term

effects. In situations where the external forcing (precipitation

or evapotranspiration) is low or vanishing, remaining noise

will alter the calculated fluxes. Figure 3f illustrates the is-

sue of remaining noise components in the calculated fluxes

before and after the use of the oscillation threshold filter. Al-

though the oscillatory fluxes are small, they may lead to no-

ticeable deviations in the cumulative values of precipitation

and evapotranspiration.

One way of filtering these oscillations would be a simple

threshold algorithm, where only fluxes that exceed a certain

threshold are considered as real fluxes. This technique has the

disadvantage that slow changes (during evapotranspiration,

light rain, dew or snowfall) will not be registered. To avoid

Hydrol. Earth Syst. Sci., 19, 3405–3418, 2015 www.hydrol-earth-syst-sci.net/19/3405/2015/
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Figure 3. Examples for the effect of the different filtering steps on the mass data (here: summarized mass of lysimeter and seepage water

tank of lysimeter BL1-L1). Please note the different scaling of the y axes. (a) raw data, (b) manual filter, (c) threshold filter, (d) median filter,

(e) smoothing filter, (f) oscillation threshold filter.

this problem, our algorithm ensures that also slow processes

will be recognized as long as their contribution in a sum

exceeds the defined threshold. Starting from an initial data

point, this algorithm determines the next point in time where

the cumulative mass change exceeds a predefined threshold.

When this threshold is reached, the intermediate data points

are linearly interpolated:

Mk =Mi +
Ml −Mi

tl − ti
· (tk − ti) , for i < k < l− 1. (1)

In this formula, M is the sum of the masses of the lysimeter

and the seepage water tank at time t , k indicates the starting

point, and l the first point where the threshold has been ex-

ceeded. Small fluctuations that are not due to real fluxes are

eliminated. The oscillation threshold filter enables the reg-

istration of slow processes such as light rain events, snow-

fall, or evapotranspiration if they are lasting long enough to

exceed the threshold as a sum. The functioning of this algo-

rithm is illustrated in Fig. 3f. Nevertheless, processes with a

low flux rate and a short duration – such that the threshold is

not reached – are still not registered and they fall out of the

precision range defined by the oscillation threshold. Thus, the

threshold value defines the limit of processes that cannot fur-

ther be resolved because they cannot be distinguished from

the remaining noise. The choice of the oscillation threshold

value is discussed in Sect. 2.3.1.

2.2.6 Calculation of fluxes

After the execution of the presented filtering steps, the fluxes

can be calculated from the processed data set. The seepage

flux S is simply calculated from the increase in the mass mS

of the seepage water reservoir.

S(ti)=
mS(ti+1)−mS(ti)

ti+1− ti
(2)

The calculation of precipitation and evapotranspiration re-

quires a distinction of these cases. This separation implies

the assumption that no evapotranspiration is occurring during

rainfall events or that evapotranspiration is at least negligible.

J (ti)=
Mi+1−Mi

ti+1− ti
(3)

P(ti)=

{
J (ti), if J (ti)>=0

0, if J (ti) < 0
(4)

ET(t)=

{
0, if J (ti)>=0

−J (ti), if J (ti) < 0
(5)

Here, J indicates the mass flux at the soil–atmosphere in-

terface, P is precipitation and ET is evapotranspiration. In

addition to the mass changes due to these water fluxes, the

biomass accumulation due to plant growth also leads to a

continuous mass change. Using the described separation pro-

cedure, this mass change is registered as precipitation. The

mass reduction due to harvesting is counted as ET. For a cor-

rect determination of the cumulative fluxes in the water bal-

ance, these fluxes have to be corrected with regard to this

effect. In this study, we refrain from a detailed discussion of

this long-term aspect and focus on the filtering of short-term

fluctuations in the lysimeter data.

www.hydrol-earth-syst-sci.net/19/3405/2015/ Hydrol. Earth Syst. Sci., 19, 3405–3418, 2015
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Figure 4. Effects of different averaging time windows n and the oscillation threshold d on the data oscillations (noise error) during nighttime

situations (a, b) and the underestimation of precipitation due to the mixing of ET and P (mixing error) during a precipitation event (c). While

(a) and (b) show the calculated fluxes, (c) shows the summarized mass of lysimeter and seepage water representing the cumulative flux at the

upper boundary. The underestimation of the precipitation-induced mass change in (c) due to the 60 min smoothing is indicated in the figure.

2.3 Filter parameter selection and adaptive methods

2.3.1 Filter parameter selection

The basic processing scheme provides all the necessary com-

ponents to tackle the different error sources on the lysimeter

weighing data and to obtain a time-resolved water balance.

However, the operator has to define some parameters, which

influence the quality of the filtering and the precision of the

resulting fluxes. The choice of the threshold values in filter-

ing step 2 (threshold filter) is rather simple and can be de-

termined by the maximal pumping rate at the lower bound-

ary of the lysimeter, the maximal precipitation rate and the

maximal ET rate, including a safety factor (see also Schrader

et al., 2013). The parameters that were used as standard in

our calculations are listed in Table 1.

The selection of the time window for the median and the

smoothing filter (filter steps 3 and 4) is much more critical.

While large time windows ensure an effective reduction of

noise (noise error), such large averaging times also reduce

the temporal resolution of processes and lead to a progressive

mixing of P and ET (mixing error), which is also an error

source in the calculation of an accurate water balance. The

influence of the smoothing filter and the oscillation threshold

filter on the noise error and the mixing error is displayed in

Fig. 4. By using the subsequent oscillation threshold filter, it

is possible to shorten time periods for averaging and to retain

Table 1. Parameters for the different filters in the basic process-

ing approach that were used as standard. If no other information is

given, the calculations refer to these parameters.

Standard parameters for the basic processing approach

threshold for lysimeter mass changes ±60 mm h−1

threshold for seepage mass changes ±9 mm h−1

median filter window 15 min

smoothing filter window 15 min

oscillation threshold 50 g

a higher resolution of processes. Considering the high dy-

namics of observed precipitation events of less than 20 min

in periods of high evapotranspiration (i.e., short summer rain;

see also examples in Fig. 7) we recommend a time window of

15 min at maximum, which is used in our calculations. This

ensures keeping a high temporal resolution of our processed

data set. This window length of 15 min is also sufficient for

the purposes of the median filter, which is designed to elim-

inate local errors of only some data points in the data and is

also used for our calculations.

Finally, the only remaining parameter to choose is the

oscillation threshold value (filter step 5), which is used to

remove remaining noise components from the data, while

maintaining a high temporal resolution in the calculated

Hydrol. Earth Syst. Sci., 19, 3405–3418, 2015 www.hydrol-earth-syst-sci.net/19/3405/2015/
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fluxes. Figure 4a and b illustrate that a very effective elim-

ination of noise is possible, using the oscillation threshold

filter. Figure 4c further shows that the combination of the

short time smoothing together with the oscillation threshold

filter leads to a better temporal reflection of the precipitation

process compared to the removal of oscillations by the use

of a longer averaging time. However, it can be seen that the

oscillation threshold filter also leads to an underestimation

of precipitation events, comparable to the described mixing

error.

Higher oscillation thresholds increase the risk of filtering

oscillations that represent real processes (e.g., dew forma-

tion). The threshold has to be chosen as large as necessary

(to filter noise) and as small as possible (to retain slow pro-

cesses and to prevent the underestimation during rain events).

This idea is reflected by the subsequently described adaptive

methods, attempting to optimize this parameter with respect

to signal. In addition to the use of these techniques, we ap-

plied the oscillation threshold filter to derive a possible range

for the cumulative water balance by selecting a maximum

and a minimum value for the possible threshold. As mini-

mum value we used a threshold of 0 g, implying that every

remaining oscillation is interpreted as real effects. To deter-

mine a maximum threshold, we investigated the fluxes of the

different lysimeters during nighttime conditions and selected

the threshold at a height where nearly all of these night-

time oscillations vanished. For our data set, we ended with a

maximum value of 50 g. This implies that for the maximum

threshold, only processes which contribute with a minimum

of 0.05 mm to the cumulative flux are considered in the water

balance. While the use of the minimum threshold will lead to

an overestimation of the cumulative fluxes of P and ET, the

use of the maximum threshold will cause an underestimation

of these values. We therefore assume to find the true values

in between these limits.

2.3.2 Parameter adaptation using an estimate of the

signal strength

Peters et al. (2014) suggest to adapt the parameters for the

smoothing window length and the oscillation threshold to the

signal strength in the data. The idea behind this method is

to increase the smoothing time window and the oscillation

threshold in periods where the signal strength is low and the

noise is becoming more dominant and to reduce them in sit-

uations where noise is less relevant. In their AWAT filter al-

gorithm, Peters et al. (2014) estimate the signal strength by

applying a polynomial fit to the data within a predefined time

window. The deviation of the data to the polynomial fit leads

to a measure of the signal strength. This estimate is used to

adapt the time window for smoothing as well as the oscil-

lation threshold to the signal strength. The parameters are

varied in a range between a minimum and a maximum value,

predefined by the operator. For the oscillation threshold, Pe-

ters et al. (2014) suggested to choose the maximal resolution

Table 2. Parameters used for the adaptive methods.

AWAT filter synchro filter

min. threshold 0.0081 mm 0.010 mm

max. threshold 0.240 mm 0.200 mm

averaging time 1–31 min 15 min (fixed)

of the weighing system as minimum value. For our data set,

we chose a minimum value of 10 g (respectively 0.01 mm).

The further values applied for the AWAT filter are listed in

Table 2 together with the parameters applied in the filtering

approach using parallel lysimeters as described in Sect. 2.3.3.

2.3.3 Parameter adaptation using parallel lysimeters

While all filtering steps described in the previous sections

are applicable to data from single lysimeters, this method

uses the combined information derived from a set of par-

allel lysimeters located at the same site for the adaptation

of the oscillation threshold to the measuring situation. Such

data are e.g., available at the TERENO SoilCan sites or at

other larger lysimeter research stations with more than just

one lysimeter. While external forcing by precipitation or

evapotranspiration should lead to synchronous reactions of

the different lysimeters, the erroneous oscillations are ran-

domly distributed. To eliminate these fluctuations, the fluxes

of the different lysimeters are compared at each data point.

The adaptation of the threshold is done in a recursive proce-

dure, starting with a minimum threshold value for the whole

data period. After the calculation of the fluxes with the ac-

tual threshold values, the fluxes between the parallel lysime-

ters are compared. At each data point, where the individual

lysimeters of the set show different signs in the calculated

fluxes, the threshold is raised by one step. After the compar-

ison at each data point, the recursion starts again with cal-

culating the fluxes with the updated (now time dependent)

threshold values. The recursion ends when the signs of the

calculated fluxes are equal or a maximum threshold value is

gained. This leads to a good reduction of noise in periods

of fluctuations while maintaining the detailed dynamics of

processes where the lysimeter masses show a distinct trend

without random oscillations. In our study, we use an algorith-

mic comparison of six lysimeters according to one SoilCan

hexagon of our test site. To prohibit that one single lysimeter

may not react optimally, which would prevent the registra-

tion of small fluxes, we implemented the algorithm such that

only an agreement of five lysimeters in the sign of the calcu-

lated fluxes is necessary, to prevent a lifting of the threshold

in the recursion process. For our calculations we used a step

width of 0.01 mm for the recursion, starting with a minimum

threshold value of 0.01 mm to a maximum of 0.20 mm (see

also Table 2). We refer to this method as synchro filter.
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3 Results and discussion

3.1 Flux dynamics

The influence of the different processing steps on the calcu-

lated fluxes for one example lysimeter is illustrated in Fig. 5.

While the manual filter and the threshold filter succeed in

eliminating large erroneous fluxes (Fig. 5b, c), the subse-

quent processing steps (Fig. 5d–f) lead to a pronounced re-

duction of small errors and noise. Because the filtering steps

work on different scales, we zoom into the data for a good

illustration of the effects.

To examine the remaining variability between the lysime-

ters after the data processing, we compared the calculated

precipitation fluxes for the different lysimeters at our re-

search site . As a first part of that comparison, the mean and

the range of the calculated fluxes across the soil–atmosphere

interface of all 12 crop lysimeters have been calculated (we

omitted the grass lysimeters in this consideration because

of the different transpiration). The good accordance is il-

lustrated in Fig. 6. The highest variation with a range of

4 mm h−1 corresponds to the event with the maximum pre-

cipitation rate of 20.2 mm h−1.

3.2 Temporal resolution

The ability of preserving detailed dynamics and a good tem-

poral resolution by using the basic filtering scheme becomes

obvious when looking at the calculated fluxes. Figure 7a

shows a heavy rainfall event on 9 May 2013 with a dura-

tion of only about 20 min, which would be spread out to a

moderate rainfall by applying larger averaging times. A light

and short rainfall on 4 May 2013 between situations of evap-

otranspiration is displayed in Fig. 7b. Larger averaging times

would lead to a merging of ET fluxes and precipitation fluxes.

Finally, Fig. 7c and d illustrate the intense dynamics of pre-

cipitation events in the examples of a medium rainfall event

in the period from 26 to 28 April 2013 and a light rainfall

from 12 April 2013. A large part of this dynamics would be

blurred with an averaging time of more than 1 h.

3.3 Cumulative precipitation

For investigating the accuracy of the determined fluxes, the

cumulative precipitation for all 18 lysimeters at the Bad

Lauchstädt site was calculated for the minimal and the maxi-

mal oscillation threshold. The range between the mean values

for these two cases was plotted together with the measure-

ment of the nearby rain gauge (Fig. 8). The indicated filter

uncertainty is representing the range of uncertainty, which

results from the contrary influences of noise error and mix-

ing error, and was calculated by using the minimal and max-

imal threshold as described in Sect. 2.3.1. This consideration

leaves us at the end of the data time series with a cumula-

tive precipitation of 158.2± 3.2 mm, indicating a remaining

uncertainty of only 2 %. Besides the filtering uncertainty, the

Figure 5. Effect of the different processing steps on the calculated

fluxes at the soil–atmosphere interface for one exemplary lysimeter

(BL1-L1). After presenting the unfiltered data (a), the effect of the

manual filter (b), the threshold filter (c), the median filter (d), the

smoothing filter (e) and the oscillation threshold filter (f) is shown.

For (d), (e) and (f), zoom levels were increased to illustrate the dif-

ferent scales affected by the filtering steps. Please note the different

scaling of the axes.

variety in the calculated precipitation between the different

lysimeters gives us a more integrated picture of the informa-

tive value of the estimated precipitation for field purposes.

This variety can be caused by systematic deviations between

the systems, unfiltered influences on the different lysimeters

or the natural heterogeneity in the precipitation. The standard

deviation between the different lysimeters for the cumulative

precipitation was about 2.7 % of the total value (independent

of the choice of the threshold value). If lysimeter measure-

ments are to be used as a basis from which to estimate pre-

cipitation for a larger area, these two uncertainties have to be

added, which results in an uncertainty of approximately 5 %.

The comparison of the lysimeter results with the rain gauge

measurements shows a good accordance, with slightly lower

values for the rain gauge during the largest part of the time
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Figure 6. Variations in the calculated fluxes between the different

crop lysimeters. The area in red shows the range of minimal and

maximal calculations.

Figure 7. Short time dynamics of precipitation events for selected

rain events of 9 May 2013 (a), 4 May 2013 (b), 26–28 April 2013

(c) and 12 April 2013 (d).

series. These lower values can be caused by the known errors

of the Hellmann rain gauge system (e.g., Richter, 1995) or

by the heterogeneity of the rainfalls and the distance between

the measurement devices. Figure 8b shows a comparison of

the precipitation on a daily basis.

Figure 9 shows the filter uncertainty together with the re-

sults for the adaptive and the basic approach using differ-

ent parameter selections. In all the approaches, the data were

processed with the first three filtering steps (manual filter,

threshold filter, median filter) before doing further filtering

steps. In the case of an averaging time of 5 min, we also re-

duced the time window for the median filter to 5 min. Only

the approaches with a more extreme choice of the filtering

Figure 8. The calculated precipitation with its uncertainties as cu-

mulative precipitation (a) and daily precipitation (b). The total un-

certainty is the sum of the estimated filtering uncertainty and the

standard deviation of the different measurements on the 18 lysime-

ters.

Figure 9. The values for cumulative precipitation together with the

standard deviation regarding the measurements of the 18 different

lysimeters for different parameter selections and the two adaptive

methods.

parameters (5 and 120 min smoothing window, 100 g thresh-

old) lead to results that are outside the determined uncer-

tainty range. For all the other parameter selections as well as

the adaptive methods, the cumulative precipitation is inside
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the uncertainty range. The difference of the basic approach

to the adaptive methods is therefore quite low and does not

exceed the 2 % uncertainty. However, this may be due to the

fact that the positive effect of remaining noise is compen-

sated partly by a negative effect of the mixing error. If this

would be the reason, an underestimation of precipitation dur-

ing events would go in hand with an overestimation of pre-

cipitation during situations of low external forcing. Such a

behavior would lead to deviations in the time-resolved fluxes,

even if these errors would cancel out in the cumulative bal-

ance.

To further examine if the more sophisticated filtering ap-

proaches (the AWAT filter, and the synchro filter) lead to a re-

duction of both these error components and therefore to a bet-

ter accuracy of the calculated water balance over the whole

time series, a partitioning of the data set into periods with and

without precipitation was done. Figure 10 shows the differ-

ent periods. Rainfalls with a minimum flux rate of 1 mm h−1

(blue boxes) were chosen such that the selected period starts

and ends between 200 and 250 min before and after the regis-

tration of positive fluxes. This is to ensure that even the tem-

poral blurring of high averaging times of 180 min will not

lead to a spreading out of the fluxes of the selected time win-

dow. In these periods of distinct rain, the noise error plays a

minor role (because the fluxes are mainly positive and do not

oscillate from positive to negative values) and so they can

be used to estimate the size of the mixing error. The green

boxes indicate very small rainfalls. These periods were ex-

cluded from the examination because, in such cases, the mix-

ing error as well as the noise error are relevant. The rest of

the data set represents periods of dominant noise and minor

error. The only contributions to precipitation are very small

processes like dew formation.

For estimating the contribution of the investigated er-

rors we compared the calculated precipitation to a reference

value. For the rain periods, where noise is playing a minor

role, we used the basic approach with an oscillation thresh-

old of 10 g (corresponding to the weighing accuracy) as refer-

ence. This low value prevents distinct influences of the mix-

ing errors, while the noise effect is assumed to be minor. For

the no-rain periods, where the mixing of ET and P is less im-

portant, we used the basic approach with the maximum oscil-

lation threshold value of 50 g as reference, where nearly all

oscillation during nighttime vanished. Figure 11a shows the

deviations to these reference values for different averaging

times, without applying an oscillation threshold filter. The

deviation during the rain periods, indicated by the blue line,

is an estimate for the mixing error, the deviation during the

no-rain periods (red line) is an estimate for the noise error.

The noise error is clearly decreasing with increasing averag-

ing time, while the contribution of the mixing error is increas-

ing. For an averaging time of about 50 min, the two errors

are compensating each other. For higher averaging times, the

mixing error is increasing and leads to a deviation of about

5 mm for an averaging time of 120 min. Averaging time be-

Figure 10. Selection of periods for the investigation of the noise and

the mixing error. The purple periods were selected for the estimation

of the mixing error, the blue periods of light rain were excluded

because of the contribution to both errors, and the rest of the data

set was used for the estimation of the noise error.

Figure 11. Effects of averaging time (a) and oscillation threshold

value (b) on the estimates for the mixing error and the noise error.

The error estimates of the AWAT filter and the synchro filter are

indicated in panel (a) with green stars for the AWAT filter and purple

stars for the synchro filter.

low 20 min (without the use of an oscillation threshold) leads

to a strong increase of the noise error.

In Fig. 11b the influence of the chosen threshold on the er-

ror estimates is illustrated. For this examination, we used the

basic processing scheme with a fixed time window of 15 min

for smoothing together with a variable value for the oscilla-

tion threshold. The principle effect of an increasing mixing

error with higher threshold values and an increasing noise er-

ror for lower threshold values is comparable to the effect in-

dicated in Fig. 11a – but with a much better reduction of noise

especially for low thresholds, which is due to the preceding

filtering with a fixed averaging time of 15 min. Although a

good choice of the smoothing time may lead to a good error

reduction, the combination of a short smoothing time and the

following oscillation threshold filter further reduces the risk

of large error influences. However, the main advantages of

using the oscillation threshold filter are the maintenance of a
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higher temporal resolution (for a better reflection of the pro-

cess dynamics) and the possibility to get an estimation of the

filtering uncertainty in the previously described way. Reca-

pitulating these results, the overall error occurring from the

described filtering errors, excluding averaging times below

half an hour without using an oscillation threshold filter, con-

tribute to the total water balance with a maximum of about

3 % (for the AWAT filter and the synchro filter). The result-

ing error estimates are both indicated in Fig. 11a. Both meth-

ods further reduce the errors compared to the range of errors

given by the accuracy range and, hence, provide a better es-

timate. While the estimate for the noise error is less for the

synchro filter (1.1 mm) than for the AWAT filter (2.2 mm),

the AWAT filter is more effective in avoiding the mixing er-

ror during rain periods (0.2 mm AWAT, −1.0 mm synchro).

Here it has to be stated that our reference value is only an

estimator for the real value, and the real value for the cumu-

lative precipitation is not known exactly. This is especially

important when interpreting the results for the noise error,

where some real effects might be misinterpreted as errors.

In summary, the adaptive methods seem to achieve a good

reduction of the filtering errors for our test data set, but the

advantage in comparison to the basic methods seems to be

minor. This is especially the case if we compare the errors

to the higher variability between the different lysimeter mea-

surements, which is not dependent on the filter method. Nev-

ertheless, the filtering errors in other data sets may be higher

because of a greater influence of noise on the data. We there-

fore recommend to always estimate the uncertainty in the de-

scribed way by choosing a minimum and a maximum thresh-

old for getting an idea of the possible filtering uncertainty. If

this uncertainty range is relatively high, it may be worth to

use more sophisticated methods like the AWAT filter or –

provided several parallel lysimeters are available – the syn-

chro filter to further reduce the uncertainty.

3.4 Cumulative evapotranspiration

The influence of the filtering error discussed in the previous

chapter for the cumulative precipitation is similar for the cu-

mulative evapotranspiration. An overestimation of P (posi-

tive flux) comes along with an overestimation of ET (neg-

ative flux), because the total flux at the upper boundary is

determined by the absolute mass change of the lysimeter and

the seepage water reservoir. Thus, an absolute uncertainty of

3 mm for the cumulative value of P due to filtering uncer-

tainty implies the same uncertainty for ET. The relative un-

certainty depends on the absolute value of ET. For the used

data sets, the absolute value of ET exceeded the value of P ,

so that the described filtering uncertainty is even below the

value of 2 %.

However, the variance between the different lysimeter

measurements is much higher for ET than for precipitation.

In Fig. 12 it is illustrated as mean and standard deviation

for the basic processing approach with an oscillation thresh-

Figure 12. Cumulative evapotranspiration (mean± standard devia-

tion) for the 12 crop lysimeters of the Bad Lauchstädt test site. The

small picture shows the results separated in soil type groups.

old of 50 g. For this calculation, only the 12 crop lysime-

ters of the Bad Lauchstädt test site were taken into account,

the 6 grassland lysimeters were excluded because of the dif-

ferent transpiration. The resulting standard deviation at the

end of the time series is only about 6.5 % of the total. The

higher variance may be caused by differences in plant growth

as well as by differences in soil properties. This uncertainty

(together with the filter uncertainty about 8.5 %) can serve

as a first estimate for the uncertainty when using lysime-

ter measurements for estimating ET for a surrounding field

of the same soil and vegetation. This implies the assump-

tion that the plant development on the lysimeters reflects the

plant development in the field at least in the mean, without

systematic deviations. To investigate the influence of the soil

type, the small figures show the cumulative ET separated by

the soil origin. Two soils (Sauerbach and Bad Lauchstädt)

exhibit considerable differences in the mean evapotranspira-

tion and a reduced variability. Because of the small data basis

with only three replicates per soil, we refrain from a statisti-

cal examination of the influence of the soil type.

3.5 Seepage flux

Strong fluctuations on the seepage mass data are rare. The

signal is typically much smoother and mass changes occur

slowly. Furthermore, no algorithmic separation in positive

and negative fluxes has to be processed, so that the choice

of the smoothing and threshold parameters on the seepage

flux is negligible and small unfiltered peaks remain uncriti-

cal. The filtering of the seepage mass data has mainly to cope

with the steps caused by emptying and filling of the seepage

water tank, which is processed by the threshold filter (filter

step 2). The result of the data processing is shown for one

exemplary lysimeter seepage tank in Fig. 13. A comparison

between the different lysimeters is relinquished because the

seepage flux is strongly dependent on the soil type as well as
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Figure 13. Comparison of processed and raw seepage mass data for

the lysimeter BL2-L1.

on the detailed control of the pumps at the lower boundary

which add or remove water to or from the lysimeter to adjust

the matric potential at the lower boundary of the lysimeter in

accordance with the field measurements.

3.6 Representativeness of evaluated time interval

For the evaluation of the proposed filtering scheme we used

data from a rather short time interval of only 2 months, so

one may question its representativeness. For discussing the

effects of the various filtering steps on the data we need to

look at them at very high temporal resolution. A longer data

set would have hidden the details of the filtering effects. Oc-

casions where our filtering scheme could run into problems

are dates where extensive soil management (e.g., sowing,

harvesting of crops, and tillage), which disturbs the weigh-

ing data, is conducted on the lysimeters. On these dates, the

manual filtering would have to be done very properly before

the automatic filtering routines could be applied. Other pe-

riods that might be challenging to handle are periods where

the lysimeters are covered with snow, since the snow cover

on the lysimeter is often connected to the snow cover outside

the lysimeters which, in turn, heavily disturbs the weighing

data. This, however, is a well-known problem in lysimetry

which by nature produces unreliable weighing data that also

need to be corrected manually in the data set. Here, of course,

additional information about the site conditions (snow cover)

during winter is required. All other situations should be well

evaluated with the current filtering scheme.

4 Summary and conclusions

In this study, we presented a basic filtering scheme to re-

move the various kinds of errors on the lysimeter weighing

data, leading to a falsification of the calculated water bal-

ance components. We showed the effectivity of these filter

components and investigated the influence of the parame-

ter selection on the accuracy of the calculated water balance

components. Furthermore, we used the data set of 18 parallel

running lysimeters to determine the variability between these

measurements and compared it with the filtering uncertainty.

For our test data set, we found that the uncertainty in the

cumulative precipitation and evapotranspiration due to the

choice of the filtering parameters for noise reduction is only

about 2 %. This uncertainty is less than the uncertainty that is

given by the heterogeneity of the precipitation measurements

between the different lysimeters, which is 2.7 %. For the use

of lysimeter measurements to estimate precipitation in the

surrounding field, both uncertainties have to be summed up,

which makes a total uncertainty of approximately 5 %. This

accuracy can be achieved while maintaining a high tempo-

ral resolution of 15 min. Examples were shown where good

temporal resolution is necessary to retain the correct process

dynamics. Despite the higher variability in the resulting ET

(6.5 %), which may be due to differences in plant growth,

this moderate uncertainty below 10 % (after adding both er-

rors) shows the potential of using lysimeter measurements as

a suitable estimate of field ET with a tolerable uncertainty

(what should be investigated in further studies). We further

tested two filtering approaches, where the filtering parame-

ters are adapted to additional data. Both adaptive methods,

the AWAT filter (Peters et al., 2014) and the synchro fil-

ter, showed a good reduction of noise within the uncertainty

limits. By using subsets of the data, we further investigated

the dependency of the filtering errors on averaging time and

oscillation threshold. We showed that the use of averaging

times between approximately 30 min and 1 h lead to the low-

est filtering errors. However, using a combination of a short

smoothing time (15 min) together with the oscillation thresh-

old filter, the filtering error could even be further reduced.

The AWAT filter and the synchro filter both showed a good

reduction of both error components. However, the improve-

ment of these methods compared to the basic approach with

adequate filtering parameters was only minor.
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