000203256 001__ 203256
000203256 005__ 20230426083127.0
000203256 0247_ $$2doi$$a10.1103/PhysRevB.92.085102
000203256 0247_ $$2ISSN$$a0163-1829
000203256 0247_ $$2ISSN$$a0556-2805
000203256 0247_ $$2ISSN$$a1095-3795
000203256 0247_ $$2ISSN$$a1098-0121
000203256 0247_ $$2ISSN$$a1550-235X
000203256 0247_ $$2Handle$$a2128/9045
000203256 0247_ $$2WOS$$aWOS:000358932600003
000203256 0247_ $$2altmetric$$aaltmetric:3929584
000203256 037__ $$aFZJ-2015-05237
000203256 041__ $$aEnglish
000203256 082__ $$a530
000203256 1001_ $$0P:(DE-HGF)0$$aRösner, M.$$b0$$eCorresponding author
000203256 245__ $$aWannier function approach to realistic Coulomb interactions in layered materials and heterostructures
000203256 260__ $$aCollege Park, Md.$$bAPS$$c2015
000203256 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439795644_7257
000203256 3367_ $$2DataCite$$aOutput Types/Journal article
000203256 3367_ $$00$$2EndNote$$aJournal Article
000203256 3367_ $$2BibTeX$$aARTICLE
000203256 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203256 3367_ $$2DRIVER$$aarticle
000203256 520__ $$aWe introduce an approach to derive realistic Coulomb interaction terms in freestanding layered materials and vertical heterostructures from ab initio modeling of the corresponding bulk materials. To this end, we establish a combination of calculations within the framework of the constrained random-phase approximation, Wannier function representation of Coulomb matrix elements within some low-energy Hilbert space, and continuum medium electrostatics, which we call Wannier function continuum electrostatics (WFCE). For monolayer and bilayer graphene we reproduce full ab initio calculations of the Coulomb matrix elements within an accuracy of 0.3 eV or better. We show that realistic Coulomb interactions in bilayer graphene can be manipulated on the eV scale by different dielectric and metallic environments. A comparison to electronic phase diagrams derived in M. M. Scherer et al. [Phys. Rev. B 85, 235408 (2012)] suggests that the electronic ground state of bilayer graphene is a layered antiferromagnet and remains surprisingly unaffected by these strong changes in the Coulomb interaction.
000203256 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000203256 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000203256 542__ $$2Crossref$$i2015-08-03$$uhttp://link.aps.org/licenses/aps-default-license
000203256 588__ $$aDataset connected to CrossRef
000203256 7001_ $$0P:(DE-Juel1)130937$$aŞaşıoğlu, E.$$b1$$ufzj
000203256 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b2$$ufzj
000203256 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b3$$ufzj
000203256 7001_ $$0P:(DE-HGF)0$$aWehling, T. O.$$b4
000203256 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.92.085102$$bAmerican Physical Society (APS)$$d2015-08-03$$n8$$p085102$$tPhysical Review B$$v92$$x1098-0121$$y2015
000203256 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.92.085102$$gVol. 92, no. 8, p. 085102$$n8$$p085102$$tPhysical review / B$$v92$$x1098-0121$$y2015
000203256 8564_ $$uhttps://juser.fz-juelich.de/record/203256/files/PhysRevB.92.085102.pdf$$yOpenAccess
000203256 8564_ $$uhttps://juser.fz-juelich.de/record/203256/files/PhysRevB.92.085102.gif?subformat=icon$$xicon$$yOpenAccess
000203256 8564_ $$uhttps://juser.fz-juelich.de/record/203256/files/PhysRevB.92.085102.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000203256 8564_ $$uhttps://juser.fz-juelich.de/record/203256/files/PhysRevB.92.085102.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000203256 8564_ $$uhttps://juser.fz-juelich.de/record/203256/files/PhysRevB.92.085102.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000203256 8564_ $$uhttps://juser.fz-juelich.de/record/203256/files/PhysRevB.92.085102.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000203256 909CO $$ooai:juser.fz-juelich.de:203256$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000203256 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2013
000203256 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203256 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203256 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203256 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203256 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203256 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203256 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203256 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203256 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000203256 9141_ $$y2015
000203256 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130937$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203256 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203256 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203256 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000203256 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000203256 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000203256 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000203256 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000203256 9801_ $$aFullTexts
000203256 980__ $$ajournal
000203256 980__ $$aVDB
000203256 980__ $$aUNRESTRICTED
000203256 980__ $$aI:(DE-Juel1)IAS-1-20090406
000203256 980__ $$aI:(DE-Juel1)PGI-1-20110106
000203256 980__ $$aI:(DE-82)080009_20140620
000203256 981__ $$aI:(DE-Juel1)PGI-1-20110106
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1102896
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0502848102
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1226419
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature12385
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms5555
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.195437
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2012.193
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1235547
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.84.1067
000203256 999C5 $$2Crossref$$oThe LDA+DMFT Approach to Strongly Correlated Materials 2011$$tThe LDA+DMFT Approach to Strongly Correlated Materials$$y2011
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.195104
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.085443
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.041407
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.245309
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.235428
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.236805
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2008.10.009
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.125102
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.26.4571
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4608/5/11/016
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.12.3060
000203256 999C5 $$2Crossref$$oComputational Nanoscience: Do It Yourself!: Winter School, 14–22 February 2006, Forschungszentrum Jülich, Germany; Lecture Notes 2006$$tComputational Nanoscience: Do It Yourself!: Winter School, 14–22 February 2006, Forschungszentrum Jülich, Germany; Lecture Notes$$y2006
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.121101
000203256 999C5 $$1L. V. Keldysh$$2Crossref$$oL. V. Keldysh 1979$$y1979
000203256 999C5 $$1L. V. Keldysh$$2Crossref$$oL. V. Keldysh 1979$$y1979
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.136805
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/49/494227
000203256 999C5 $$1J. D. Jackson$$2Crossref$$oJ. D. Jackson Classical Electrodynamics 1999$$tClassical Electrodynamics$$y1999
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.215501
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl1016706
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018730110113644
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.205418
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.235408
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.214418
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.156803
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.245451
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.126402
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1194988
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1208683
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.256806
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2011.251
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.076602
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1406
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.100.544
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.036101
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.84.1419
000203256 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.167204