001     203262
005     20210129220329.0
024 7 _ |a 10.1093/cercor/bhu100
|2 doi
024 7 _ |a 1047-3211
|2 ISSN
024 7 _ |a 1460-2199
|2 ISSN
024 7 _ |a WOS:000361464000063
|2 WOS
024 7 _ |a altmetric:3085587
|2 altmetric
024 7 _ |a pmid:24836690
|2 pmid
037 _ _ |a FZJ-2015-05243
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rehme, Anne
|0 P:(DE-Juel1)165784
|b 0
|e Corresponding author
245 _ _ |a Identifying Neuroimaging Markers of Motor Disability in Acute Stroke by Machine Learning Techniques
260 _ _ |a Oxford
|c 2015
|b Oxford Univ. Press
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1439808884_7261
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Conventional mass-univariate analyses have been previously used to test for group differences in neural signals. However, machine learning algorithms represent a multivariate decoding approach that may help to identify neuroimaging patterns associated with functional impairment in “individual” patients. We investigated whether fMRI allows classification of individual motor impairment after stroke using support vector machines (SVMs). Forty acute stroke patients and 20 control subjects underwent resting-state fMRI. Half of the patients showed significant impairment in hand motor function. Resting-state connectivity was computed by means of whole-brain correlations of seed time-courses in ipsilesional primary motor cortex (M1). Lesion location was identified using diffusion-weighted images. These features were used for linear SVM classification of unseen patients with respect to motor impairment. SVM results were compared with conventional mass-univariate analyses. Resting-state connectivity classified patients with hand motor deficits compared with controls and nonimpaired patients with 82.6–87.6% accuracy. Classification was driven by reduced interhemispheric M1 connectivity and enhanced connectivity between ipsilesional M1 and premotor areas. In contrast, lesion location provided only 50% sensitivity to classify impaired patients. Hence, resting-state fMRI reflects behavioral deficits more accurately than structural MRI. In conclusion, multivariate fMRI analyses offer the potential to serve as markers for endophenotypes of functional impairment.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Volz, L. J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Feis, D.-L.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bomilcar-Focke, I.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liebig, T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 5
700 1 _ |a Fink, G. R.
|0 P:(DE-Juel1)131720
|b 6
700 1 _ |a Grefkes, C.
|0 P:(DE-Juel1)161406
|b 7
773 _ _ |a 10.1093/cercor/bhu100
|g Vol. 25, no. 9, p. 3046 - 3056
|0 PERI:(DE-600)1483485-6
|n 9
|p 3046 - 3056
|t Cerebral cortex
|v 25
|y 2015
|x 1460-2199
856 4 _ |u https://juser.fz-juelich.de/record/203262/files/Cereb.%20Cortex-2015-Rehme-3046-56.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203262/files/Cereb.%20Cortex-2015-Rehme-3046-56.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203262/files/Cereb.%20Cortex-2015-Rehme-3046-56.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203262/files/Cereb.%20Cortex-2015-Rehme-3046-56.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203262/files/Cereb.%20Cortex-2015-Rehme-3046-56.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203262/files/Cereb.%20Cortex-2015-Rehme-3046-56.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203262
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165784
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161406
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CEREB CORTEX : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CEREB CORTEX : 2013
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-1-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21