000203263 001__ 203263
000203263 005__ 20210129220330.0
000203263 0247_ $$2doi$$a10.1093/cercor/bhu032
000203263 0247_ $$2ISSN$$a1047-3211
000203263 0247_ $$2ISSN$$a1460-2199
000203263 0247_ $$2WOS$$aWOS:000361464000002
000203263 0247_ $$2altmetric$$aaltmetric:4729899
000203263 0247_ $$2pmid$$apmid:24610120
000203263 037__ $$aFZJ-2015-05244
000203263 041__ $$aEnglish
000203263 082__ $$a610
000203263 1001_ $$0P:(DE-HGF)0$$aVolz, Lukas J.$$b0
000203263 245__ $$aWhat Makes the Muscle Twitch: Motor System Connectivity and TMS-Induced Activity
000203263 260__ $$aOxford$$bOxford Univ. Press$$c2015
000203263 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439805345_7255
000203263 3367_ $$2DataCite$$aOutput Types/Journal article
000203263 3367_ $$00$$2EndNote$$aJournal Article
000203263 3367_ $$2BibTeX$$aARTICLE
000203263 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203263 3367_ $$2DRIVER$$aarticle
000203263 520__ $$aTranscranial magnetic stimulation (TMS) of the primary motor cortex (M1) evokes several volleys of corticospinal activity. While the earliest wave (D-wave) originates from axonal activation of cortico-spinal neurons (CSN), later waves (I-waves) result from activation of mono- and polysynaptic inputs to CSNs. Different coil orientations preferentially stimulate cortical elements evoking different outputs: latero-medial-induced current (LM) elicits D-waves and short-latency electromyographic responses (MEPs); posterior–anterior current (PA) evokes early I-waves. Anterior–posterior current (AP) is more variable and tends to recruit later I-waves, featuring longer onset latencies compared with PA-TMS. We tested whether the variability in response to AP-TMS was related to functional connectivity of the stimulated M1 in 20 right-handed healthy subjects who underwent functional magnetic resonance imaging while performing an isometric contraction task. The MEP-latency after AP-TMS (relative to LM-TMS) was strongly correlated with functional connectivity between the stimulated M1 and a network involving cortical premotor areas. This indicates that stronger premotor–M1 connectivity increases the probability that AP-TMS recruits shorter latency input to CSNs. In conclusion, our data strongly support the hypothesis that TMS of M1 activates distinct neuronal pathways depending on the orientation of the stimulation coil. Particularly, AP currents seem to recruit short latency cortico-cortical projections from premotor areas. 
000203263 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000203263 588__ $$aDataset connected to CrossRef
000203263 7001_ $$0P:(DE-HGF)0$$aHamada, Masashi$$b1
000203263 7001_ $$0P:(DE-HGF)0$$aRothwell, John C.$$b2
000203263 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b3$$eCorresponding author
000203263 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhu032$$gVol. 25, no. 9, p. 2346 - 2353$$n9$$p2346 - 2353$$tCerebral cortex$$v25$$x1460-2199$$y2015
000203263 8564_ $$uhttps://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.pdf$$yRestricted
000203263 8564_ $$uhttps://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.gif?subformat=icon$$xicon$$yRestricted
000203263 8564_ $$uhttps://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203263 8564_ $$uhttps://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203263 8564_ $$uhttps://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203263 8564_ $$uhttps://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203263 909CO $$ooai:juser.fz-juelich.de:203263$$pVDB
000203263 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203263 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000203263 9141_ $$y2015
000203263 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2013
000203263 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203263 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203263 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000203263 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203263 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203263 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203263 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203263 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000203263 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000203263 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2013
000203263 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000203263 980__ $$ajournal
000203263 980__ $$aVDB
000203263 980__ $$aI:(DE-Juel1)INM-3-20090406
000203263 980__ $$aUNRESTRICTED