001     203263
005     20210129220330.0
024 7 _ |a 10.1093/cercor/bhu032
|2 doi
024 7 _ |a 1047-3211
|2 ISSN
024 7 _ |a 1460-2199
|2 ISSN
024 7 _ |a WOS:000361464000002
|2 WOS
024 7 _ |a altmetric:4729899
|2 altmetric
024 7 _ |a pmid:24610120
|2 pmid
037 _ _ |a FZJ-2015-05244
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Volz, Lukas J.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a What Makes the Muscle Twitch: Motor System Connectivity and TMS-Induced Activity
260 _ _ |a Oxford
|c 2015
|b Oxford Univ. Press
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1439805345_7255
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) evokes several volleys of corticospinal activity. While the earliest wave (D-wave) originates from axonal activation of cortico-spinal neurons (CSN), later waves (I-waves) result from activation of mono- and polysynaptic inputs to CSNs. Different coil orientations preferentially stimulate cortical elements evoking different outputs: latero-medial-induced current (LM) elicits D-waves and short-latency electromyographic responses (MEPs); posterior–anterior current (PA) evokes early I-waves. Anterior–posterior current (AP) is more variable and tends to recruit later I-waves, featuring longer onset latencies compared with PA-TMS. We tested whether the variability in response to AP-TMS was related to functional connectivity of the stimulated M1 in 20 right-handed healthy subjects who underwent functional magnetic resonance imaging while performing an isometric contraction task. The MEP-latency after AP-TMS (relative to LM-TMS) was strongly correlated with functional connectivity between the stimulated M1 and a network involving cortical premotor areas. This indicates that stronger premotor–M1 connectivity increases the probability that AP-TMS recruits shorter latency input to CSNs. In conclusion, our data strongly support the hypothesis that TMS of M1 activates distinct neuronal pathways depending on the orientation of the stimulation coil. Particularly, AP currents seem to recruit short latency cortico-cortical projections from premotor areas.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hamada, Masashi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rothwell, John C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 3
|e Corresponding author
773 _ _ |a 10.1093/cercor/bhu032
|g Vol. 25, no. 9, p. 2346 - 2353
|0 PERI:(DE-600)1483485-6
|n 9
|p 2346 - 2353
|t Cerebral cortex
|v 25
|y 2015
|x 1460-2199
856 4 _ |u https://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203263/files/Cereb.%20Cortex-2015-Volz-2346-53.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203263
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161406
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CEREB CORTEX : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CEREB CORTEX : 2013
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21