000203309 001__ 203309
000203309 005__ 20240708133243.0
000203309 037__ $$aFZJ-2015-05276
000203309 041__ $$aEnglish
000203309 1001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b0$$eCorresponding author$$ufzj
000203309 1112_ $$a20th International Conference on Secondary Ion Mass Spectrometry$$cSeattle$$d2015-09-13 - 2015-09-18$$gSIMS XX$$wUSA
000203309 245__ $$aLithium distribution as function of state of charge in thin film all solid state batteries characterized by time of flight secondary ion mass spectrometry
000203309 260__ $$c2015
000203309 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1440146629_15835
000203309 3367_ $$033$$2EndNote$$aConference Paper
000203309 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000203309 3367_ $$2ORCID$$aOTHER
000203309 3367_ $$2DRIVER$$aconferenceObject
000203309 3367_ $$2BibTeX$$aINPROCEEDINGS
000203309 520__ $$aTime of flight secondary ion mass spectrometry (ToF-SIMS) is an appropriate analytical technique for the investigation of thin film Li ion battery components, especially when the depth and spatial distribution of lithium inside a battery component or even the whole thin film cell are of interest. Analytical techniques using electron or x-ray beams for elemental detection are not able to access lithium in a sufficient way due to its low atomic number of Z=3. The low detection limits of ToF-SIMS and its eminent spatial resolution make this technique a suitable candidate to investigate the interface between different functional battery layers or to visualize the lithium distribution within e.g. the active cathode layer. Therefore, a layered structure of a thin film all solid state battery system with a typical thickness of a few micrometers is an ideal model system for a detailed ToF-SIMS study. While operating in the dual beam mode, the ToF-SIMS is able to investigate all electrochemical active layers of the battery in one depth profile.The starting point of this study is the investigation of thin films of the commonly used cathode material LiCoO2. The thin film cathodes are prepared by a radio frequency sputter deposition process. The first aspect is the investigation of the deposition process by ToF-SIMS and by other analytical methods like e.g. scanning electron microscopy or x-ray diffraction. Using these techniques, the impact of different deposition parameters like e.g. the deposition temperature or the effect of an additional interlayer as diffusion barrier and adhesion layer is investigated. This knowledge is applied to enable the reproducible production of samples.   The key aspect of this study is monitoring the lithiation and delithiation process of the LiCoO2 cathode material using post mortem ToF-SIMS analysis. Therefore, different thin film batteries with LiCoO2 cathodes in combination with liquid electrolytes and also solid state electrolytes are cycled to different states of charge. Afterwards elemental distributions (especially Li) within the cathode are measured by ToF-SIMS and the different states of charge (SOC) are compared in a semi quantitative way. It is discussed, how the deintercalation of lithium during charging affects the matrix environment and hence the characteristics of the depth profiles. In order to get also a quantitative insight into the Li distribution within the thin films, 2 MeV p nuclear reaction analysis and glow discharge optical emission spectroscopy are used as quantitative comparison methods.
000203309 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000203309 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000203309 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b1$$ufzj
000203309 7001_ $$0P:(DE-Juel1)139534$$aMöller, Sören$$b2$$ufzj
000203309 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b3$$ufzj
000203309 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b4
000203309 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b5$$ufzj
000203309 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6$$ufzj
000203309 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b7$$ufzj
000203309 909CO $$ooai:juser.fz-juelich.de:203309$$pVDB
000203309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139534$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203309 9101_ $$0I:(DE-Juel1)VS-II-20090406$$6P:(DE-Juel1)145623$$aWissenschaftlicher Geschäftsbereich II$$b4$$kVS-II
000203309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000203309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000203309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000203309 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000203309 9141_ $$y2015
000203309 920__ $$lyes
000203309 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000203309 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000203309 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x2
000203309 980__ $$aabstract
000203309 980__ $$aVDB
000203309 980__ $$aI:(DE-Juel1)IEK-1-20101013
000203309 980__ $$aI:(DE-Juel1)IEK-4-20101013
000203309 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000203309 980__ $$aUNRESTRICTED
000203309 981__ $$aI:(DE-Juel1)IFN-1-20101013
000203309 981__ $$aI:(DE-Juel1)IMD-2-20101013
000203309 981__ $$aI:(DE-Juel1)IEK-4-20101013
000203309 981__ $$aI:(DE-Juel1)ZEA-3-20090406