000203322 001__ 203322
000203322 005__ 20240610120510.0
000203322 0247_ $$2doi$$a10.1039/C5CE00865D
000203322 0247_ $$2WOS$$aWOS:000361540700008
000203322 037__ $$aFZJ-2015-05289
000203322 041__ $$aEnglish
000203322 082__ $$a540
000203322 1001_ $$0P:(DE-Juel1)140353$$aZhang, Lei$$b0
000203322 245__ $$aRole of catalyst in controlling the growth and morphology of one-dimensional SiC nanostructures
000203322 260__ $$aLondon$$bRSC$$c2015
000203322 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1442922974_338
000203322 3367_ $$2DataCite$$aOutput Types/Journal article
000203322 3367_ $$00$$2EndNote$$aJournal Article
000203322 3367_ $$2BibTeX$$aARTICLE
000203322 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203322 3367_ $$2DRIVER$$aarticle
000203322 520__ $$aTo control the morphologies of one-dimensional (1D) nanostructures, especially during the catalyst-assisted growth of semiconductor nanostructures, is the key to unlock their potential applications. In this work, we demonstrate that, the morphology of the 1D silicon carbide (SiC) nanostructures can be controlled by manipulating the composition of the catalyst in the microwave plasma chemical vapor deposition process. It is revealed that iron silicide presents as the main catalyst to initiate the growth of 1D SiC nanostructure. High-resolution transmission electron microscopic analysis shows that, the stoichiometry of the iron silicide governs the final morphology of 1D SiC nanowire. For the growth of SiC nanowires, the catalyst is Fe5Si3, while it is Fe3Si for SiC nanoneedles. A special orientation match between the iron silicide catalyst and the SiC nanowire is observed for the first time during the growth of SiC nanostructures. The mechanism for the different morphology of the SiC nanostructures is believed to be the different etching resistivity of the catalyst particles under H2 plasma etching. Based on the above mechanism, a continuous change in the morphology of the SiC nanostructures has been achieved by controlling the supply of Si during growth.
000203322 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000203322 588__ $$aDataset connected to CrossRef
000203322 7001_ $$0P:(DE-HGF)0$$aZhuang, Hao$$b1
000203322 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b2
000203322 7001_ $$0P:(DE-HGF)0$$aJiang, Xin$$b3$$eCorresponding author
000203322 773__ $$0PERI:(DE-600)2025075-7$$a10.1039/C5CE00865D$$gp. 10.1039.C5CE00865D$$n37$$p7070-7078$$tCrystEngComm$$v17$$x1466-8033$$y2015
000203322 8564_ $$uhttps://juser.fz-juelich.de/record/203322/files/c5ce00865d.pdf$$yRestricted
000203322 8564_ $$uhttps://juser.fz-juelich.de/record/203322/files/c5ce00865d.gif?subformat=icon$$xicon$$yRestricted
000203322 8564_ $$uhttps://juser.fz-juelich.de/record/203322/files/c5ce00865d.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203322 8564_ $$uhttps://juser.fz-juelich.de/record/203322/files/c5ce00865d.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203322 8564_ $$uhttps://juser.fz-juelich.de/record/203322/files/c5ce00865d.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203322 8564_ $$uhttps://juser.fz-juelich.de/record/203322/files/c5ce00865d.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203322 909CO $$ooai:juser.fz-juelich.de:203322$$pVDB
000203322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140353$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203322 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000203322 9141_ $$y2015
000203322 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTENGCOMM : 2013
000203322 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203322 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203322 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203322 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203322 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203322 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203322 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203322 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203322 920__ $$lyes
000203322 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000203322 980__ $$ajournal
000203322 980__ $$aVDB
000203322 980__ $$aI:(DE-Juel1)PGI-5-20110106
000203322 980__ $$aUNRESTRICTED
000203322 981__ $$aI:(DE-Juel1)ER-C-1-20170209