000203323 001__ 203323
000203323 005__ 20240610115759.0
000203323 0247_ $$2doi$$a10.1016/j.mtcomm.2014.12.003
000203323 0247_ $$2WOS$$aWOS:000364735200008
000203323 037__ $$aFZJ-2015-05290
000203323 082__ $$a620
000203323 1001_ $$0P:(DE-HGF)0$$aMa, Yao$$b0
000203323 245__ $$aLow-temperature growth of carbon nanofiber using a vapor–facet–solid process
000203323 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000203323 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1440146759_15829
000203323 3367_ $$2DataCite$$aOutput Types/Journal article
000203323 3367_ $$00$$2EndNote$$aJournal Article
000203323 3367_ $$2BibTeX$$aARTICLE
000203323 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203323 3367_ $$2DRIVER$$aarticle
000203323 520__ $$aMost carbon nanofibers (CNFs) are grown at temperatures higher than 700 °C with a chemical vapor deposition (CVD) process and their growths are explained using the vapor–liquid–solid (VLS) mechanism. Herein we report the realization of low temperature growth of CNFs and the interpretation of their growth with a vapor–facet–solid (VFS) mechanism. CNFs were synthesized via a thermal CVD process at the temperature as low as 350 °C and characterized using elemental analysis, gas chromatography–mass spectrometry, X-ray photoelectron spectroscopy, and Raman spectroscopy. They feature unique structures of partly ordered discontinuous and hydrogen rich polymer sheets with a diameters of 0.5–1.5 nm. Based on a trimerization reaction occurring on the Fe catalyst surface, their initial growth step is the formation of six-membered rings from the source gas (i.e. C2H2). Subsequently, these rings act as structural unit and construct various larger planar molecules. Due to catalytic difference of the crystalline faces for a given Fe catalyst particle, a concentration gradient of hydrocarbon molecule introduces simultaneously. This gradient drives the diffusion of hydrocarbon molecule from the Fe(1 1 0) to the Fe(1 0 0) face, leading to the formation of disordered hydrogen-rich polymer structures. Highly graphitic CNFs can be obtained simply by annealing those polymer structures at higher temperatures. This growth mode proposed is workable whenever transition metal catalyzed nanostructures are synthesized by a thermal CVD process at low temperatures
000203323 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000203323 588__ $$aDataset connected to CrossRef
000203323 7001_ $$0P:(DE-HGF)0$$aWeimer, Christian$$b1
000203323 7001_ $$0P:(DE-HGF)0$$aYang, Nianjun$$b2$$eCorresponding author
000203323 7001_ $$0P:(DE-Juel1)140353$$aZhang, Lei$$b3
000203323 7001_ $$0P:(DE-HGF)0$$aStaedler, Thorsten$$b4
000203323 7001_ $$0P:(DE-HGF)0$$aJiang, Xin$$b5$$eCorresponding author
000203323 773__ $$0PERI:(DE-600)2829441-5$$a10.1016/j.mtcomm.2014.12.003$$gVol. 2, p. e55 - e61$$pe55 - e61$$tMaterials today / Communications$$v2$$x2352-4928$$y2015
000203323 909CO $$ooai:juser.fz-juelich.de:203323$$pVDB
000203323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140353$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203323 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000203323 9141_ $$y2015
000203323 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203323 920__ $$lyes
000203323 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000203323 980__ $$ajournal
000203323 980__ $$aVDB
000203323 980__ $$aI:(DE-Juel1)PGI-5-20110106
000203323 980__ $$aUNRESTRICTED
000203323 981__ $$aI:(DE-Juel1)ER-C-1-20170209