001 | 203324 | ||
005 | 20240610120511.0 | ||
024 | 7 | _ | |a 10.1021/am508851r |2 doi |
024 | 7 | _ | |a 1944-8244 |2 ISSN |
024 | 7 | _ | |a 1944-8252 |2 ISSN |
024 | 7 | _ | |a WOS:000350614600043 |2 WOS |
037 | _ | _ | |a FZJ-2015-05291 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Zhuang, Hao |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Diamond Network: Template-Free Fabrication and Properties |
260 | _ | _ | |a Washington, DC |c 2015 |b Soc. |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1440140685_15828 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a A porous diamond network with three-dimensionally interconnected pores is of technical importance but difficult to be produced. In this contribution, we demonstrate a simple, controllable, and “template-free” approach to fabricate diamond networks. It combines the deposition of diamond/β-SiC nanocomposite film with a wet-chemical selective etching of the β-SiC phase. The porosity of these networks was tuned from 15 to 68%, determined by the ratio of the β-SiC phase in the composite films. The electrochemical working potential and the reactivity of redox probes on the diamond networks are similar to those of a flat nanocrystalline diamond film, while their surface areas are hundreds of times larger than that of a flat diamond film (e.g., 490-fold enhancement for a 3 μm thick diamond network). The marriage of the unprecedented physical/chemical features of diamond with inherent advantages of the porous structure makes the diamond network a potential candidate for various applications such as water treatment, energy conversion (batteries or fuel cells), and storage (capacitors), as well as electrochemical and biochemical sensing. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Yang, Nianjun |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Fu, Haiyuan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Zhang, Lei |0 P:(DE-Juel1)140353 |b 3 |
700 | 1 | _ | |a Wang, Chun |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Huang, Nan |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Jiang, Xin |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
773 | _ | _ | |a 10.1021/am508851r |g Vol. 7, no. 9, p. 5384 - 5390 |0 PERI:(DE-600)2467494-1 |n 9 |p 5384 - 5390 |t ACS applied materials & interfaces |v 7 |y 2015 |x 1944-8252 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203324/files/am508851r.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203324/files/am508851r.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203324/files/am508851r.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203324/files/am508851r.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203324/files/am508851r.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203324/files/am508851r.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:203324 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)140353 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2013 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2013 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|