001     203325
005     20240610115853.0
024 7 _ |a 10.1002/chem.201500440
|2 doi
024 7 _ |a 0947-6539
|2 ISSN
024 7 _ |a 1521-3765
|2 ISSN
024 7 _ |a WOS:000360093700020
|2 WOS
037 _ _ |a FZJ-2015-05292
082 _ _ |a 540
100 1 _ |a Ma, Yao
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Shape-Controlled Growth of Carbon Nanostructures: Yield and Mechanism
260 _ _ |a Weinheim
|c 2015
|b Wiley-VCH
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1440140576_15837
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Carbon nanostructures with precisely controlled shapes are difficult materials to synthesize. A facet-selective-catalytic process was thus proposed to synthesize polymer-linked carbon nanostructures with different shapes, covering straight carbon nanofiber, carbon nano Y-junction, carbon nano-hexapus, and carbon nano-octopus. A thermal chemical vapor deposition process was applied to grow these multi-branched carbon nanostructures at temperatures lower than 350 °C. Cu nanoparticles were utilized as the catalyst and acetylene as the reaction gas. The growth of those multi-branched nanostructures was realized through the selective growth of polymer-like sheets on certain indexed facets of Cu catalyst. The vapor–facet–solid (VFS) mechanism, a new growth mode, has been proposed to interpret such a growth in the steps of formation, diffusion, and coupling of carbon-containing oligomers, as well as their final precipitation to form nanostructures on the selective Cu facets.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sun, Xiao
|0 P:(DE-Juel1)151305
|b 1
700 1 _ |a Yang, Nianjun
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Xia, Junhai
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhang, Lei
|0 P:(DE-Juel1)140353
|b 4
700 1 _ |a Jiang, Xin
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1002/chem.201500440
|g Vol. 21, no. 35, p. 12370 - 12375
|0 PERI:(DE-600)1478547-x
|n 35
|p 12370 - 12375
|t Chemistry - a European journal
|v 21
|y 2015
|x 0947-6539
909 C O |o oai:juser.fz-juelich.de:203325
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151305
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)140353
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM-EUR J : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM-EUR J : 2013
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21