000203358 001__ 203358
000203358 005__ 20240711114039.0
000203358 0247_ $$2doi$$a10.1016/j.jnucmat.2014.10.090
000203358 0247_ $$2ISSN$$a0022-3115
000203358 0247_ $$2ISSN$$a1873-4820
000203358 0247_ $$2WOS$$aWOS:000358467200044
000203358 037__ $$aFZJ-2015-05311
000203358 082__ $$a530
000203358 1001_ $$0P:(DE-HGF)0$$aArakcheev, A. S.$$b0
000203358 245__ $$aTheoretical investigation of crack formation in tungsten after heat loads
000203358 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000203358 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1440149142_15830
000203358 3367_ $$2DataCite$$aOutput Types/Journal article
000203358 3367_ $$00$$2EndNote$$aJournal Article
000203358 3367_ $$2BibTeX$$aARTICLE
000203358 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203358 3367_ $$2DRIVER$$aarticle
000203358 520__ $$aTransient events such as ELMs in large plasma devices lead to significant heat load on plasma-facing components (PFCs). ELMs cause mechanical damage of PFCs (e.g. cracks). The cracks appear due to stresses caused by thermal extension. Analytical calculations of the stresses are carried out for tungsten. The model only takes into account the basic features of solid body mechanics without material modifications (e.g. fatigue or recrystallization). The numerical results of the model demonstrate good agreement with experimental data obtained at the JUDITH-1, PSI-2 and GOL-3 facilities.
000203358 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000203358 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000203358 588__ $$aDataset connected to CrossRef
000203358 7001_ $$0P:(DE-Juel1)130040$$aHuber, A.$$b1$$eCorresponding author$$ufzj
000203358 7001_ $$0P:(DE-Juel1)129811$$aWirtz, M.$$b2$$ufzj
000203358 7001_ $$0P:(DE-Juel1)130158$$aSergienko, G.$$b3$$ufzj
000203358 7001_ $$0P:(DE-Juel1)156279$$aSteudel, I.$$b4$$ufzj
000203358 7001_ $$0P:(DE-HGF)0$$aBurdakov, A. V.$$b5
000203358 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b6$$ufzj
000203358 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b7$$ufzj
000203358 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b8$$ufzj
000203358 7001_ $$0P:(DE-Juel1)4596$$aMertens, Ph.$$b9$$ufzj
000203358 7001_ $$0P:(DE-HGF)0$$aShoshin, A. A.$$b10
000203358 7001_ $$0P:(DE-Juel1)6784$$aUnterberg, B.$$b11$$ufzj
000203358 7001_ $$0P:(DE-HGF)0$$aVasilyev, A. A.$$b12
000203358 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2014.10.090$$gVol. 463, p. 246 - 249$$p246 - 249$$tJournal of nuclear materials$$v463$$x0022-3115$$y2015
000203358 8564_ $$uhttps://juser.fz-juelich.de/record/203358/files/1-s2.0-S0022311514007740-main.pdf$$yRestricted
000203358 8564_ $$uhttps://juser.fz-juelich.de/record/203358/files/1-s2.0-S0022311514007740-main.gif?subformat=icon$$xicon$$yRestricted
000203358 8564_ $$uhttps://juser.fz-juelich.de/record/203358/files/1-s2.0-S0022311514007740-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203358 8564_ $$uhttps://juser.fz-juelich.de/record/203358/files/1-s2.0-S0022311514007740-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203358 8564_ $$uhttps://juser.fz-juelich.de/record/203358/files/1-s2.0-S0022311514007740-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203358 8564_ $$uhttps://juser.fz-juelich.de/record/203358/files/1-s2.0-S0022311514007740-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203358 909CO $$ooai:juser.fz-juelich.de:203358$$pVDB
000203358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130158$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156279$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000203358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000203358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000203358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4596$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000203358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6784$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000203358 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000203358 9141_ $$y2015
000203358 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MATER : 2013
000203358 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203358 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203358 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203358 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203358 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203358 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203358 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000203358 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203358 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000203358 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000203358 980__ $$ajournal
000203358 980__ $$aVDB
000203358 980__ $$aI:(DE-Juel1)IEK-4-20101013
000203358 980__ $$aI:(DE-Juel1)IEK-2-20101013
000203358 980__ $$aUNRESTRICTED
000203358 981__ $$aI:(DE-Juel1)IMD-1-20101013
000203358 981__ $$aI:(DE-Juel1)IFN-1-20101013
000203358 981__ $$aI:(DE-Juel1)IEK-2-20101013