TY  - JOUR
AU  - Formighieri, C.
AU  - Franck, F.
AU  - Bassi, R.
TI  - Regulation of the pigment optical density of an algal culture: filling the gap between photosynthetic productivity in the laboratory and in mass culture
JO  - Journal of biotechnology
VL  - 162
SN  - 0168-1656
CY  - Amsterdam [u.a.]
PB  - Elsevier Science
M1  - PreJuSER-20338
SP  - 115 - 123
PY  - 2012
N1  - Record converted from VDB: 12.11.2012
AB  - An increasing number of investors is looking at algae as a viable source of biofuels, beside cultivation for human/animal feeding or to extract high-value chemicals and pharmaceuticals. However, present biomass productivities are far below theoretical estimations implying that a large part of the available photosynthetically active radiation is not used in photosynthesis. Light utilisation inefficiency and rapid light attenuation within a mass culture due to high pigment optical density of wild type strains have been proposed as major limiting factors reducing solar-to-biomass conversion efficiency. Analysis of growth yields of mutants with reduced light-harvesting antennae and/or reduced overall pigment concentration per cell, generated by either mutagenesis or genetic engineering, could help understanding limiting factors for biomass accumulation in photobioreactor. Meanwhile, studies on photo-acclimation can provide additional information on the average status of algal cells in a photobioreactor to be used in modelling-based predictions. Identifying limiting factors in solar-to-biomass conversion efficiency is the first step for planning strategies of genetic improvement and domestication of algae to finally fill the gap between theoretical and industrial photosynthetic productivity.
LB  - PUB:(DE-HGF)16
C6  - pmid:22426090
UR  - <Go to ISI:>//WOS:000311019700015
DO  - DOI:10.1016/j.jbiotec.2012.02.021
UR  - https://juser.fz-juelich.de/record/20338
ER  -