TY - JOUR AU - Gupta, Sudipta AU - Camargo, Manuel AU - Stellbrink, Jörg AU - Allgaier, J. AU - Radulescu, Aurel AU - Lindner, Peter AU - Zaccarelli, Emanuela AU - Likos, Christos N. AU - Richter, Dieter TI - Dynamic phase diagram of soft nanocolloids JO - Nanoscale VL - 7 IS - 33 SN - 2040-3372 CY - Cambridge PB - RSC Publ. M1 - FZJ-2015-05341 SP - 13924 - 13934 PY - 2015 AB - We present a comprehensive experimental and theoretical study covering micro-, meso- and macroscopic length and time scales, which enables us to establish a generalized view in terms of structure–property relationship and equilibrium dynamics of soft colloids. We introduce a new, tunable block copolymer model system, which allows us to vary the aggregation number, and consequently its softness, by changing the solvophobic-to-solvophilic block ratio (m : n) over two orders of magnitude. Based on a simple and general coarse-grained model of the colloidal interaction potential, we verify the significance of interaction length σint governing both structural and dynamic properties. We put forward a quantitative comparison between theory and experiment without adjustable parameters, covering a broad range of experimental polymer volume fractions (0.001 ≤ ϕ ≤ 0.5) and regimes from ultra-soft star-like to hard sphere-like particles, that finally results in the dynamic phase diagram of soft colloids. In particular, we find throughout the concentration domain a strong correlation between mesoscopic diffusion and macroscopic viscosity, irrespective of softness, manifested in data collapse on master curves using the interaction length σint as the only relevant parameter. A clear reentrance in the glass transition at high aggregation numbers is found, recovering the predicted hard-sphere (HS) value in the hard-sphere like limit. Finally, the excellent agreement between our new experimental systems with different but already established model systems shows the relevance of block copolymer micelles as a versatile realization of soft colloids and the general validity of a coarse-grained approach for the description of the structure and dynamics of soft colloids. LB - PUB:(DE-HGF)16 UR - <Go to ISI:>//WOS:000359546900015 C6 - pmid:26219628 DO - DOI:10.1039/C5NR03702F UR - https://juser.fz-juelich.de/record/203398 ER -