000203399 001__ 203399
000203399 005__ 20220930130046.0
000203399 0247_ $$2doi$$a10.1016/j.geoderma.2015.07.015
000203399 0247_ $$2ISSN$$a0016-7061
000203399 0247_ $$2ISSN$$a1872-6259
000203399 0247_ $$2WOS$$aWOS:000362130900018
000203399 0247_ $$2altmetric$$aaltmetric:4385410
000203399 037__ $$aFZJ-2015-05342
000203399 041__ $$aEnglish
000203399 082__ $$a550
000203399 1001_ $$0P:(DE-Juel1)136836$$aAltdorff, D.$$b0$$eCorresponding author
000203399 245__ $$aMapping peat layer properties with multi-coil offset electromagnetic induction and laser scanning elevation data
000203399 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000203399 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1440404141_27024
000203399 3367_ $$2DataCite$$aOutput Types/Journal article
000203399 3367_ $$00$$2EndNote$$aJournal Article
000203399 3367_ $$2BibTeX$$aARTICLE
000203399 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203399 3367_ $$2DRIVER$$aarticle
000203399 520__ $$aPeatlands store large amounts of soil organic carbon (SOC). Depending on their present condition, they act as a source or sink of carbon dioxide. Therefore, peatlands are highly relevant for climate change investigations and there is considerable interest to assess spatial heterogeneity of peat soil properties in order to assess the total amount of stored carbon. However, reliable information about peat properties remains difficult to obtain at the field scale. A potential way to acquire this information is the indirect mapping of easily recordable physical variables that correlate with peat properties, such as the apparent electrical conductivity (ECa). In this study, we aim to explore the potential of multi-coil offset electromagnetic induction (EMI) measurements to provide spatial estimates of SOC content, bulk density, and SOC stock for a highly variable and disturbed peatland relict (~ 35 ha) with a remaining peat layer thickness of less than 1 m. EMI measurements comprised six integral depths that varied from 0–0.25 to 0–1.80 m. In combination with ancillary laser-scanning elevation data, a multiple linear regression model was calibrated to reference data from 34 soil cores that were used to calculate integral properties of the upper 0.25, 0.5, and 1 m layer, as well as for the total peat layer. Leave-one-out cross-validation for the different depth ranges resulted in a root mean square error of prediction (RMSEP) between 1.36 and 5.16% for SOC content, between 0.108 and 0.183 g cm− 3 for bulk density, and between 3.56 and 9.73 kg m− 2 for SOC stocks, which corresponds to roughly 15%, 10%, and 20% of the total field variability, respectively. The selection of explanatory variables in the regression models showed that the EMI data were important for accurate model predictions, while the topography-based variables mainly acted as noise suppressors. The accuracy of the SOC content estimates roughly equalled the quality of SOC content predictions obtained in previous field applications of the visible-near infrared technique (vis-NIR). The spatial variation of the predicted peat layer properties showed similarities to the former land use distribution. Overall, it was concluded that EMI measurements offer a useful alternative to the established vis-NIR method for SOC content mapping in carbon-rich soils.
000203399 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000203399 588__ $$aDataset connected to CrossRef
000203399 7001_ $$0P:(DE-Juel1)129436$$aBechtold, M.$$b1
000203399 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, J.$$b2
000203399 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b3
000203399 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J. A.$$b4
000203399 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2015.07.015$$gVol. 261, p. 178 - 189$$p178 - 189$$tGeoderma$$v261$$x0016-7061$$y2016
000203399 8564_ $$uhttps://juser.fz-juelich.de/record/203399/files/1-s2.0-S0016706115300252-main.pdf$$yRestricted
000203399 8564_ $$uhttps://juser.fz-juelich.de/record/203399/files/1-s2.0-S0016706115300252-main.gif?subformat=icon$$xicon$$yRestricted
000203399 8564_ $$uhttps://juser.fz-juelich.de/record/203399/files/1-s2.0-S0016706115300252-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203399 8564_ $$uhttps://juser.fz-juelich.de/record/203399/files/1-s2.0-S0016706115300252-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203399 8564_ $$uhttps://juser.fz-juelich.de/record/203399/files/1-s2.0-S0016706115300252-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203399 8564_ $$uhttps://juser.fz-juelich.de/record/203399/files/1-s2.0-S0016706115300252-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203399 8767_ $$92015-08-04$$d2015-08-06$$ePublication charges$$jZahlung erfolgt
000203399 909CO $$ooai:juser.fz-juelich.de:203399$$pVDB:Earth_Environment$$pVDB$$pOpenAPC$$popenCost
000203399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136836$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129436$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203399 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000203399 9141_ $$y2016
000203399 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203399 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000203399 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2013
000203399 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203399 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203399 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203399 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203399 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203399 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000203399 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000203399 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203399 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000203399 980__ $$ajournal
000203399 980__ $$aVDB
000203399 980__ $$aI:(DE-Juel1)IBG-3-20101118
000203399 980__ $$aUNRESTRICTED
000203399 980__ $$aAPC