000203401 001__ 203401
000203401 005__ 20210129220352.0
000203401 0247_ $$2doi$$a10.1016/j.jhydrol.2015.06.031
000203401 0247_ $$2ISSN$$a0022-1694
000203401 0247_ $$2ISSN$$a1879-2707
000203401 0247_ $$2WOS$$aWOS:000358968200017
000203401 037__ $$aFZJ-2015-05344
000203401 041__ $$aEnglish
000203401 082__ $$a690
000203401 1001_ $$0P:(DE-HGF)0$$aPeñuela, Andrés$$b0$$eCorresponding author
000203401 245__ $$aHow do slope and surface roughness affect plot-scale overland flow connectivity?
000203401 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000203401 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1440406200_27025
000203401 3367_ $$2DataCite$$aOutput Types/Journal article
000203401 3367_ $$00$$2EndNote$$aJournal Article
000203401 3367_ $$2BibTeX$$aARTICLE
000203401 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203401 3367_ $$2DRIVER$$aarticle
000203401 520__ $$aSurface micro-topography and slope drive the hydrological response of plots through the gradual filling of depressions as well as the establishment of hydraulic connections between overflowing depressions. Therefore, quantifying and understanding the effects of surface roughness and slope on plot-scale overland flow connectivity is crucial to improve current hydrological modeling and runoff prediction. This study aimed at establishing predictive equations relating structural and functional connectivity indicators in function of slope and roughness. The Relative Surface Connection function (RSCf) was used as a functional connectivity indicator was applied. Three characteristic parameters were defined to characterize the RSCf: the surface initially connected to the outlet, the connectivity threshold and the maximum depression storage (DSmax). Gaussian surface elevation fields (6 m × 6 m) were generated for a range of slopes and roughnesses (sill σ and range R of the variogram). A full factorial of 6 slopes (0–15%), 6 values of R (50–400 mm) and 6 values of σ (2–40 mm) was considered, and the RSCf calculated for 10 realizations of each combination. Results showed that the characteristic parameters of the RSCf are greatly influenced by R, σ and slope. At low slopes and high ratios of σ/2R, the characteristic parameters of the RSCf appear linked to a single component of the surface roughness (R or σ). On the contrary, both R and σ are needed to predict the RSCf at high slopes and low ratios of σ/2R. A simple conceptualization of surface depressions as rectangles, whose shape was determined by R and σ, allowed deriving simple mathematical expressions to estimate the characteristic parameters of the RSCf in function of R, σ and slope. In the case of DSmax, the proposed equation performed better than previous empirical expressions found in the literature which do not account for the horizontal component of the surface roughness. The proposed expressions allow estimating the characteristic points of the RSCf with reasonable accuracy and could therefore prove useful for integrating plot-scale overland flow connectivity into hydrological models whenever the RSCf presents a well-defined connectivity threshold.Keywords
000203401 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000203401 588__ $$aDataset connected to CrossRef
000203401 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b1
000203401 7001_ $$0P:(DE-HGF)0$$aBielders, Charles L.$$b2
000203401 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2015.06.031$$gVol. 528, p. 192 - 205$$p192 - 205$$tJournal of hydrology$$v528$$x0022-1694$$y2015
000203401 8564_ $$uhttps://juser.fz-juelich.de/record/203401/files/1-s2.0-S0022169415004448-main.pdf$$yRestricted
000203401 8564_ $$uhttps://juser.fz-juelich.de/record/203401/files/1-s2.0-S0022169415004448-main.gif?subformat=icon$$xicon$$yRestricted
000203401 8564_ $$uhttps://juser.fz-juelich.de/record/203401/files/1-s2.0-S0022169415004448-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203401 8564_ $$uhttps://juser.fz-juelich.de/record/203401/files/1-s2.0-S0022169415004448-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203401 8564_ $$uhttps://juser.fz-juelich.de/record/203401/files/1-s2.0-S0022169415004448-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203401 8564_ $$uhttps://juser.fz-juelich.de/record/203401/files/1-s2.0-S0022169415004448-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203401 909CO $$ooai:juser.fz-juelich.de:203401$$pVDB:Earth_Environment$$pVDB
000203401 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROL : 2013
000203401 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203401 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203401 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203401 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203401 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203401 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203401 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000203401 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000203401 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000203401 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203401 9141_ $$y2015
000203401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203401 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000203401 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000203401 980__ $$ajournal
000203401 980__ $$aVDB
000203401 980__ $$aI:(DE-Juel1)IBG-3-20101118
000203401 980__ $$aUNRESTRICTED