000203406 001__ 203406
000203406 005__ 20220930130046.0
000203406 0247_ $$2doi$$a10.5194/hess-19-2145-2015
000203406 0247_ $$2ISSN$$a1027-5606
000203406 0247_ $$2ISSN$$a1607-7938
000203406 0247_ $$2Handle$$a2128/9057
000203406 0247_ $$2WOS$$aWOS:000355319500003
000203406 0247_ $$2altmetric$$aaltmetric:3969084
000203406 037__ $$aFZJ-2015-05349
000203406 041__ $$aEnglish
000203406 082__ $$a550
000203406 1001_ $$0P:(DE-Juel1)145813$$aGebler, S.$$b0$$eCorresponding author
000203406 245__ $$aActual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket
000203406 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000203406 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1440479861_27017
000203406 3367_ $$2DataCite$$aOutput Types/Journal article
000203406 3367_ $$00$$2EndNote$$aJournal Article
000203406 3367_ $$2BibTeX$$aARTICLE
000203406 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203406 3367_ $$2DRIVER$$aarticle
000203406 520__ $$aThis study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and evapotranspiration calculated with the full-form Penman–Monteith equation (ETPM) for the Rollesbroich site in the Eifel (western Germany). The comparison of ETa measured by EC (including correction of the energy balance deficit) and by lysimeters is rarely reported in the literature and allows more insight into the performance of both methods. An evaluation of ETa for the two methods for the year 2012 shows a good agreement with a total difference of 3.8% (19 mm) between the ETa estimates. The highest agreement and smallest relative differences (< 8%) on a monthly basis between both methods are found in summer. ETa was close to ETPM, indicating that ET was energy limited and not limited by water availability. ETa differences between lysimeter and EC were mainly related to differences in grass height caused by harvest and the EC footprint. The lysimeter data were also used to estimate precipitation amounts in combination with a filter algorithm for the high-precision lysimeters recently introduced by Peters et al. (2014). The estimated precipitation amounts from the lysimeter data differ significantly from precipitation amounts recorded with a standard rain gauge at the Rollesbroich test site. For the complete year 2012 the lysimeter records show a 16 % higher precipitation amount than the tipping bucket. After a correction of the tipping bucket measurements by the method of Richter (1995) this amount was reduced to 3%. With the help of an on-site camera the precipitation measurements of the lysimeters were analyzed in more detail. It was found that the lysimeters record more precipitation than the tipping bucket, in part related to the detection of rime and dew, which contribute 17% to the yearly difference between both methods. In addition, fog and drizzle explain an additional 5.5% of the total difference. Larger differences are also recorded for snow and sleet situations. During snowfall, the tipping bucket device underestimated precipitation severely, and these situations contributed also 7.9% to the total difference. However, 36% of the total yearly difference was associated with snow cover without apparent snowfall, and under these conditions snow bridges and snow drift seem to explain the strong overestimation of precipitation by the lysimeter. The remaining precipitation difference (about 33%) could not be explained and did not show a clear relation to wind speed. The variation of the individual lysimeters devices compared to the lysimeter mean are small, showing variations up to 3% for precipitation and 8% for evapotranspiration.
000203406 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000203406 588__ $$aDataset connected to CrossRef
000203406 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b1
000203406 7001_ $$0P:(DE-Juel1)129523$$aPütz, Thomas$$b2
000203406 7001_ $$0P:(DE-Juel1)145951$$aPost, H.$$b3
000203406 7001_ $$0P:(DE-Juel1)144420$$aSchmidt, Marius$$b4$$ufzj
000203406 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b5
000203406 773__ $$0PERI:(DE-600)2100610-6$$a10.5194/hess-19-2145-2015$$gVol. 19, no. 5, p. 2145 - 2161$$n5$$p2145 - 2161$$tHydrology and earth system sciences$$v19$$x1607-7938$$y2015
000203406 8564_ $$uhttps://juser.fz-juelich.de/record/203406/files/hess-19-2145-2015.pdf$$yOpenAccess
000203406 8564_ $$uhttps://juser.fz-juelich.de/record/203406/files/hess-19-2145-2015.gif?subformat=icon$$xicon$$yOpenAccess
000203406 8564_ $$uhttps://juser.fz-juelich.de/record/203406/files/hess-19-2145-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000203406 8564_ $$uhttps://juser.fz-juelich.de/record/203406/files/hess-19-2145-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000203406 8564_ $$uhttps://juser.fz-juelich.de/record/203406/files/hess-19-2145-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000203406 8564_ $$uhttps://juser.fz-juelich.de/record/203406/files/hess-19-2145-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000203406 8767_ $$92015-01-29$$d2015-02-05$$eAPC$$jZahlung erfolgt
000203406 909CO $$ooai:juser.fz-juelich.de:203406$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000203406 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHYDROL EARTH SYST SC : 2013
000203406 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203406 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000203406 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000203406 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203406 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203406 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203406 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203406 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203406 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000203406 9141_ $$y2015
000203406 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145813$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203406 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203406 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129523$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203406 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145951$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203406 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144420$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203406 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000203406 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000203406 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000203406 9801_ $$aFullTexts
000203406 980__ $$ajournal
000203406 980__ $$aVDB
000203406 980__ $$aI:(DE-Juel1)IBG-3-20101118
000203406 980__ $$aUNRESTRICTED
000203406 980__ $$aAPC