001     203407
005     20210129220354.0
024 7 _ |2 doi
|a 10.1007/s11104-015-2455-z
024 7 _ |2 ISSN
|a 0032-079X
024 7 _ |2 ISSN
|a 1573-5036
024 7 _ |2 WOS
|a WOS:000358666600001
037 _ _ |a FZJ-2015-05350
041 _ _ |a English
082 _ _ |a 570
100 1 _ |0 P:(DE-HGF)0
|a Hussain, Khalid
|b 0
245 _ _ |a Combining δ13C measurements and ERT imaging: improving our understanding of competition at the crop-soil-hedge interface
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1440423109_27016
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Hedgerow cropping decreases erosion in hillside agriculture but also competes for water and nutrients with crops. This study combined two methods for an improved understanding of water and nutrient competition at the crop-soil-hedge interface.δ13C isotopic discrimination in plants and soil electrical resistivity tomography (ERT) imaging were used in a field trial with maize monocropping (MM) vs. leucaena hedgerow intercropping with and without fertilizer (MHF+ and MHF−) in Thailand.Hedges significantly reduced maize grain yield and aboveground biomass in rows close to hedgerows. ERT revealed water depletion was stronger in MM than in MHF+ and MHF- confirming time domain reflectometry and leaf area data. In MHF+, water depletion was higher in maize rows close to the hedge compared to rows distant to hedges and maize grain δ13C was significantly less negative in rows close to hedges (-10.33‰) compared to distant ones (-10.64‰). Lack of N increased grain δ13C in MHF- (-9.32‰, p ≤ 0.001). Both methods were correlated with each other (r = 0.66, p ≤ 0.001). Combining ERT with grain δ13C and %N allowed identifying that maize growth close to hedges was limited by N and not by water supply.Combining ERT imaging and 13C isotopic discrimination approaches improved the understanding of spatial-temporal patterns of competition at the hedge-soil-crop interface and allowed distinguishing between water and N competition in maize based hedgerow systems.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Wongleecharoen, Chalermchart
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Hilger, Thomas
|b 2
|e Corresponding author
700 1 _ |0 P:(DE-Juel1)129548
|a Vanderborght, Jan
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Garré, Sarah
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Onsamrarn, Wattanai
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Sparke, Marc-André
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Diels, Jan
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Kongkaew, Thanuchai
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Cadisch, Georg
|b 9
773 _ _ |0 PERI:(DE-600)1478535-3
|a 10.1007/s11104-015-2455-z
|g Vol. 393, no. 1-2, p. 1 - 20
|n 1-2
|p 1 - 20
|t Plant and soil
|v 393
|x 1573-5036
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/203407/files/art%253A10.1007%252Fs11104-015-2455-z.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203407/files/art%253A10.1007%252Fs11104-015-2455-z.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203407/files/art%253A10.1007%252Fs11104-015-2455-z.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203407/files/art%253A10.1007%252Fs11104-015-2455-z.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203407/files/art%253A10.1007%252Fs11104-015-2455-z.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203407/files/art%253A10.1007%252Fs11104-015-2455-z.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203407
|p VDB
|p VDB:Earth_Environment
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129548
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PLANT SOIL : 2013
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21