000203421 001__ 203421
000203421 005__ 20240711085641.0
000203421 0247_ $$2doi$$a10.1039/C4RA08089K
000203421 0247_ $$2WOS$$aWOS:000346733500086
000203421 037__ $$aFZJ-2015-05362
000203421 041__ $$aEnglish
000203421 082__ $$a540
000203421 1001_ $$0P:(DE-HGF)0$$aDrozdov, I. V.$$b0$$eCorresponding author
000203421 245__ $$aModelling and evaluation of hydrogen desorption kinetics controlled by surface reaction and bulk diffusion for magnesium hydride
000203421 260__ $$aLondon$$bRSC Publishing$$c2015
000203421 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1441363181_15820
000203421 3367_ $$2DataCite$$aOutput Types/Journal article
000203421 3367_ $$00$$2EndNote$$aJournal Article
000203421 3367_ $$2BibTeX$$aARTICLE
000203421 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203421 3367_ $$2DRIVER$$aarticle
000203421 520__ $$aThe ‘shrinking core’ model has been applied for the evaluation of hydrogen desorption kinetics during decomposition of magnesium hydride. According to our estimation, the full desorption time is expected to have a quadratic dependence on the size of powder particles, if the bulk diffusion of hydrogen atoms in magnesium is a rate controlling step. However, for the actual diffusion rate for hydrogen in magnesium bulk the diffusion cannot significantly influence the overall desorption kinetics for micro- and nano-powders.
000203421 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000203421 588__ $$aDataset connected to CrossRef
000203421 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b1
000203421 7001_ $$0P:(DE-Juel1)129666$$aStöver, D.$$b2$$ufzj
000203421 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/C4RA08089K$$gVol. 5, no. 7, p. 5363 - 5371$$n7$$p5363 - 5371$$tRSC Advances$$v5$$x2046-2069$$y2015
000203421 8564_ $$uhttps://juser.fz-juelich.de/record/203421/files/c4ra08089k.pdf$$yRestricted
000203421 8564_ $$uhttps://juser.fz-juelich.de/record/203421/files/c4ra08089k.gif?subformat=icon$$xicon$$yRestricted
000203421 8564_ $$uhttps://juser.fz-juelich.de/record/203421/files/c4ra08089k.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203421 8564_ $$uhttps://juser.fz-juelich.de/record/203421/files/c4ra08089k.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203421 8564_ $$uhttps://juser.fz-juelich.de/record/203421/files/c4ra08089k.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203421 8564_ $$uhttps://juser.fz-juelich.de/record/203421/files/c4ra08089k.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203421 909CO $$ooai:juser.fz-juelich.de:203421$$pVDB
000203421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129666$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203421 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000203421 9141_ $$y2015
000203421 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2013
000203421 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203421 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000203421 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203421 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203421 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203421 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203421 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203421 920__ $$lyes
000203421 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000203421 980__ $$ajournal
000203421 980__ $$aVDB
000203421 980__ $$aI:(DE-Juel1)IEK-1-20101013
000203421 980__ $$aUNRESTRICTED
000203421 981__ $$aI:(DE-Juel1)IMD-2-20101013